Приложение к рабочей программе учебной дисциплины ОП.06. Общая и неорганическая химия

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ОП.06. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

специальность СПО 33.02.01 Фармация Квалификация Фармацевт очная форма обучения Контрольно-оценочные средства по учебной дисциплине ОП.06. Общая и неорганическая химия разработаны в соответствии с Федеральным государственным образовательным стандартом по специальности среднего профессионального образования 33.02.01 Фармация, утвержденном приказом Министерства образования и науки РФ от 12.05.2014 г. № 501 и рабочей программой соответствующей учебной дисциплины.

Организация-разработчик: ФГБОУ ВО РостГМУ Министерства здравоохранения Российской Федерации, колледж.

Разработчик: *Михайленко Н.В.*, преподаватель высшей квалификационной категории колледжа ФГБОУ ВО РостГМУ Минздрава России.

1. Паспорт комплекта контрольно-оценочных средств

Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОП.08 Общая и неорганическая химия.

КОС включают контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме1 экзамена.

КОС разработаны в соответствии с:

программой подготовки специалистов среднего звена по специальности СПО 33.02.01 Фармация;

программой учебной дисциплины ОП.06 Общая и неорганическая химия.

2. Требования к результатам освоения дисциплины

В результате освоения учебной дисциплины обучающийся должен уметь:

- Доказывать с помощью химических реакций химические свойства веществ неорганической природы, в том числе лекарственных;
- Составлять формулы комплексных соединений и давать им названия.

В результате освоения учебной дисциплины обучающийся должен знать:

- Периодический закон и характеристику элементов периодической системы Д.И. Менделеева;
- Основы теории протекания химических процессов;
- Строение и реакционные способности неорганических соединений;
- Способы получения неорганических соединений;
- Теорию растворов и способы выражения концентрации растворов;
- Формулы лекарственных средств неорганической природы.

Должны быть сформированы общие компетенции, включающие в себя способность:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
- ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях.

.

¹ Соответствует учебному плану специальности СПО

ОК 09. Использовать информационные технологии в профессиональной деятельности.

Способствовать формированию следующих профессиональных компетенций:

ПК 2.5. Соблюдать правила санитарно-гигиенического режима, охраны труда, техники безопасности и противопожарной безопасности, порядок действий при чрезвычайных ситуациях.

3. Формы и методы контроля и оценки результатов освоения учебной дисциплины

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения		
1	2		
Умения:			
У1. доказывать с помощью химических реакций химические свойства веществ неорганической природы, в том числе лекарственных;	Решение упражнений, написание химических реакций. Решение задач.		
У2. составлять формулы комплексных соединений и давать им названия;	Индивидуальный устный (письменный) опрос. Химический диктант.		
Знания:			
31. периодического закона и характеристики элементов периодической системы Д.И. Менделеева;	Фронтальный опрос. Индивидуальный устный (письменный) опрос. Тестирование.		
32. основы теории протекания химических процессов;	Индивидуальный устный (письменный) опрос.		
33. строения и реакционных способностей неорганических соединений;	Индивидуальный устный (письменный) опрос. Тестирование. Решение задач.		
34. способов получения неорганических соединений;	Индивидуальный устный (письменный) опрос. Решение задач.		
	Составление уравнений химических реакций получения неорганических соединений.		
35. теории растворов и способов выражения концентрации растворов;	Решение расчетных задач.		
36. формул лекарственных средств неорганической природы;	Индивидуальный устный (письменный) опрос. Химический диктант.		

4. Контроль и оценка освоения учебной дисциплины по темам (разделам), видам контроля

по дисциплине ОП.06 Общая и неорганическая химия

(наименование дисциплины)

№ п/п	Контролируемые разделы (темы) дисциплины Раздел 1. Теоретические	Код контролируемой компетенции (или ее части), умений, знаний	Наименование оценочного средства
1.	основы химии Тема 1.1. Введение. Предмет и задачи химии	OK 01, OK 02, OK 07, 31	Фронтальный опрос. Индивидуальный устный (письменный) опрос. Тестирование.
	Тема 1.2. Периодический закон и периодическая система элементов Д. И. Менделеева. Теория строения веществ	ОК 02, ОК 07, ОК 09, 31, У1,	Решение упражнений, написание химических реакций. Решение задач. Фронтальный опрос. Индивидуальный устный (письменный) опрос. Тестирование.
	Тема 1.3. Классы неорганических веществ	ОК 02, ОК 07, ОК 09, У1, 31-4	Решение упражнений, написание химических реакций. Решение задач. Фронтальный опрос. Индивидуальный устный (письменный) опрос. Тестирование. Составление уравнений химических реакций получения неорганических соединений.
	Тема 1.4. Комплексные соединения	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09, У2, 31-3	Индивидуальный устный (письменный) опрос. Химический диктант. Фронтальный опрос. Индивидуальный устный (письменный) опрос. Тестирование. Решение задач.
	Тема 1.5. Растворы	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 35-6	Решение упражнений, написание химических реакций. Решение задач. Индивидуальный устный (письменный) опрос. Химический диктант. Решение расчетных задач.
	Тема 1.6. Теория электролитической диссоциации	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 35-6	Решение упражнений, написание химических реакций. Решение задач. Индивидуальный устный (письменный) опрос. Химический диктант.

		Решение расчетных задач.
Тема 1.7. Химические реакции	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
2. Раздел 2. Химия элементов и их соединений		
Тема 2.1. р-элементы. Галогены	OK 01, OK 02, OK 04, OK 07, OK 09 У1-2, 31-3, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.2. Халькогены	OK 01, OK 02, OK 04, OK 07, OK 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.3. Главная подгруппа V группы	ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.4. Главная подгруппа IV группы	OK 01, OK 02, OK 04, OK 07, OK 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.5. Главная подгруппа III группы	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.6. Главная подгруппа II- I группы	OK 01, OK 02. OK 04, OK 07. OK 09. У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.7	ПК 2.5,	Индивидуальный устный

Побочная подгруппа I и II групп	OK 01, OK 02, OK 04, OK 07, OK 09 У1-2, 32, 33, 35-6	(письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.8. Побочная подгруппа VI и VII групп.	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 31-3, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Тема 2.9. Побочная подгруппа VIII группы.	ПК 2.5, ОК 01, ОК 02, ОК 04, ОК 07, ОК 09 У1-2, 32, 33, 35-6	Индивидуальный устный (письменный) опрос. Химический диктант. Решение упражнений, написание химических реакций. Решение задач. Тестирование.
Промежуточная аттестация в форме экзамена	ПК 2.5, ОК 01, ОК 02, У1-2, 31-6	Вопросы для собеседования

5. КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ ДЛЯ ВХОДНОГО КОНТРОЛЯ

Вариант 1.

		-
1.	К кислотам относится каждое из веп	цеств, указанных в ряду
	1) H ₂ S, HNO ₃ , HBr	3) HC1, H ₂ SO ₄ , KCl
	2) HI, H _s PO ₄ , NH ₃	4) HCl O ₄ , CH ₄ , H ₂ S
2.	•	х свойств химические элементы расположены в ряду
	1) $P \rightarrow S \rightarrow CI$	$3)O \rightarrow S \rightarrow Se$
	,	$4) S \rightarrow P \rightarrow Si$
3.	<i>'</i>	о оксида которого R_2O_7 , имеет распределение электронов по
	слоям:	· ····································
	1)2,8,5	3)2,8,6
	2) 2, 8, 7	4) 2, 8, 8
4.		кисления -2 всегда имеет каждый из двух химических
	элементов:	
	1) O, S	3) O, C
	2) S, N	4) S, C1
5.	Реакция горения аммиака, уравнение	, ,
•	является реакцией	5 KoTopon 11(11) + 502 - 21(2 + 01120)
	1) без изменения степеней окисления	я, каталитической, экзотермической
		, некаталитической, эндотермической
		, некаталитической, экзотермической
		я, некаталитической, экзотермической
6.		а при электролитической диссоциации образуют
•	1) NaH ₂ PO ₄ и Na ₃ PO ₄	3) HNO ₃ и NH ₃
	2) H ₂ SO ₄ и HBr	4) H ₂ SiO ₃ и HC1
7.	•	$Cu^{2+} + 2OH^{-} = Cu(OH)_{2}$ взаимодействуют
•	1) CuSO ₄ и Fe(OH) ₂	3) Cu ₂ SO ₃ и NaOH
	2) CuCl ₂ и Ca(OH) ₂	4) КОН и Cu ₂ S
8	Оксид магния реагирует с	1) 11011 11 0 4120
•	1) CuO	3) HNO _s
	·	4) KOH
Λ	2) Ca(OH) ₂	,
У.	Основание и соль образуются при вз	
	1) Ba(OH) ₂ и KNO _s	3) Cu(OH) ₂ µ ZnCl ₂
11	2) NaOH и Fe ₂ (SO ₄) _s	4) КОН и H ₂ SO ₄
1(7113	которых $BaC1_2$, $Cu(OH)_2$, Fe, будет взаимодействовать
	1) сульфат цинка	3) гидроксид натрия
	2) нитрат магния	4) серная кислота
1 1		цородной кислотой и хлоридом бария
	может реагировать	
	1) $(NH_4)_2CO_3$	3) $Mg(NO_s)_2$
	2) CuSO ₄	4) AgCl
12	2. В периоде неметаллические свой	йства химических элементов с увеличением атомного номера
	усиливаются, потому что	
	1) не изменяется число электронных	
	2) изменяется валентность элементо	_
	3) уменьшается число электронов вн	
	4) увеличивается число электронов в	внешнего электронного слоя

Вариант 2.

1.	Вещества, формулы которых Na ₂ CO	² 3, Ca(HCO ₃) ₂ , K ₂ SiO _s , относят к
	1) кислотам	3) основаниям
	2) солям	4) основным оксидам
2.	В ряду элементов кремний — фосф	$op \rightarrow cepa \rightarrow xлор$
	1) увеличивается число электронных	
	2) увеличивается степень окисления	
	3) уменьшается число протонов в яд	
	4) уменьшается общее число электр	онов в атомах
3.	Химический элемент, в атомах кото	рого распределение электронов по слоям 2, 8, 7, образует
	высший оксид состава	
	1) $C1_2O_7$	3) C1 ₂ O ₅
	2) N_2O_5	4) Li ₂ O
4.	В фосфате калия степень окисления	фосфора равна
	1) +5	3) -3
	2) +3	4) -5
5.	Химическая реакция, уравнение кот	орой $2SO_2 + O_2 \rightarrow 2SO_3$, является реакцией
	1) соединения, обратимой, некатали	
	_	і, обратимой, каталитической, экзотермической
	3) окисления, необратимой, каталит	
	4) восстановления, необратимой, не	
6.	Диссоциации сульфата калия соотве	тствует правая часть уравнения
	l) K ⁺ + HSO ₄	$^{1}_{3}$)2K ⁺ + SO ₄ $^{2}_{2}$
	2) $K^+ + HSO_4^{2-}$	$3)2K^{+} + SO_{4}^{2^{-}}$ $4) 2K^{+} + SO_{3}^{2^{-}}$
7.	Сущность реакции обмена между ра	створами нитрата серебра и соляной кислотой можно
	выразить сокращенным ионным ура	
	$2) Ag^{+} + NO_{3} = AgNO_{3}$	3) $H^{+} + C\Gamma = HC1$ 4) $H^{+} + NO_{3}^{-} = HNO_{3}$
8.	Оксид калия будет взаимодействова	ть с каждым из веществ, указанных
	в ряду	
	1) HNO ₃ , NaCl, H ₂ O	3) SO ₂ , Ca(OH) ₂ , HC1
	2) Ca(OH) ₂ , H ₂ S, Ag ₂ O	4) P ₂ O ₅ , H ₂ O, H ₂ SO ₄
9.	. Необратимая химическая реакция во	озможна между
	1) Fe(OH) ₃ и CuSO ₄	3) NaOH и Cu ₂ SO ₄
	2) Ca(OH) ₂ и CuC1 ₂	4) KOH и Cu ₂ S
10	0. С каждым из веществ, формулы	которых AgNO ₃ , KOH, H ₂ SO _{4(конц.)} , Zn, будет реагировать
	1) соляная кислота	3) сульфат натрия
	2) хлорид меди (II)	4) карбонат кальция
11	1. Реакции замещения соответству	тет уравнение
	1) $2CH_4 \rightarrow C_2H_2 + 3H_2$	•
	2) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	
	3) $CH_4 + 2C1_2 \rightarrow CH_2C1_2 + 2HC1$	
	4) $C_2H_4 + H_2 \rightarrow C_2H_6$	
12	2. Оксид углерода (IV) можно полу	учить при взаимодействии
	1) карбоната кальция и азотной кисл	•
	2) карбоната натрия и гидроксида ба	
	3) углерода и воды	
	4) гидроксида кальция и угольной к	ислоты

6. КОМПЛЕКТ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Общие положения неорганической химии

•	omile monomening	moopi wiiii iccitoii	28.0.17.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
1. Какая из кислот явля		-	
	б) сернистая		г) кремниевая
2. Какая из приведення		-	· -
_	б) HPO ₃	_	
3. Амфотерные свойст	,	, .	,
	б) кальция		г) цинка
4. Оксид серы (IV) тяж	*	75 1 77	, ,
	б) в 20 раз	в) в 2 раза	г) в 33 раза
5. В каком из указанны	· -	*	,
_	б) CO ₂ + C		Γ) $H_2SO_4 + NH_3$
6. Молярная масса серг			, 2
	б) 25 г/моль		г) 98 г/моль
7. Основной солью явл	*	,	,
а) гидрокид висм		в) дигидро	bосфат кальция
, <u>-</u>	орид висмута (III)		
8. В результате, каких		,	
			Γ)Ba(OH) ₂ + H ₂ SO ₄
9. Какие из элементов			,(= ,/2
a) B, Si		в) Ba, Na	г) С. Р
10. Соли кремниевой к		, ,	-, -, -
-	б) силикаты		г) апетаты
11. Какие из указанных	*		
a)NaOH	_	в)LiOH	г) NH4OH
12. Формула дихромат	, , ,	,	,
	б) K ₂ Cr ₂ O ₇	в) CaCl ₂	r) KCl
13. К реакциям замеще		*	,
a) $HgO \rightarrow 2Hg +$	_		$Cl \rightarrow ZnCl2 + H2$
6) $2Mg + O2 \rightarrow 2$,	$ICl \rightarrow KCl + H2O$
14. Какой объем займе	•	,	
	б) 2,24 л		г) 44 л
15. Сколько молекул с	-	*	
	б) 6,02 · 1023		г) 22,4 · 1023
	-	-	цействии 0,5 моль сульфита
натрия с избытком сол		•	
-	б)2,24 л		г) 1,12 л
17. Масса молекулы во	· ·	,	, ,
	б) 3 · 10 23 г	в)1,1 · 10 – 25 г	г)1,1 · 10 23 г
18. Массовая доля серн			, ,
	б) 25%;		г) 15%
19. Сколько г железа с		,	
	б)36,8 г		
· · · · · · · · · · · · · · · · · · ·			ррода 53,3%. Формула этого
оксида: a) Li2O			

Общая и неорганическая химия Вариант 1

1. К простым соединениям относят		
а. воду	В.	песок
б. воздух		кислород
2. Масса $4,214 \cdot 10^{23}$ молекул столовой соды равна	a	•
а. 74,2 гр.	В.	78,2 гр.
б. 76,6 гр.	Γ.	78,8 гр.
3. Постоянную валентность имеют все элементы р	эяд	a:
a. Li, S, V, Cu	В.	Ca, Sr, Cl, Mg
б. Be, Ba, Rb, F	Γ.	K, Mn, Zn, A
4. В реакции MgO + $H_2SO_4 \rightarrow MgSO_4 + H_2O + \Delta Q$	хи	мическое равновесие сместиться вправо
при а) понижении давления, б) повышении давлен		
понижении температуры.		• • • • • •
а. а, в	В.	б
б. б, г	г.	Γ
5. При растворении кусочка калия массой 23,4 гр.	в 2	26,6 гр. воды массовая доля
растворенного вещества составит		
a. 62%	В.	66%
б. 64%	Γ.	68%
6. Формула средней соли		
a. MgOHCO ₃	В.	NaHSiO ₃
$6. \operatorname{Ca}(H_2\operatorname{PO}_4)_2$	Γ.	$(NH_4)_2SO_4$
7. К слабым кислотам относят		, , , , , , , , , , , , , , , , , , ,
а. сернистую	В.	фосфорную
б. хлорную		угольную
8. С гашёной известью при н.у. реагирует		
a. O_2	В.	HF
б. H ₂ O	Γ.	NO_2
9. Степень окисления кислотообразующего элеме	нта	в хлористой кислоте равна
a3		+3
б5	Γ.	+5
10. Сумма коэффициентов реакции $S + HNO_3 \rightarrow$	· F	$H_2SO_4 + NO^{\uparrow}$ равна
a. 4		6
б. 5	Γ.	
11. Осадок выпадает при взаимодействии		
-	В.	нитрита кальция и едкого натра
б. едкого кали и фосфорной кислоты		
12. К 140 гр. 8,6%-ного раствора нитрата натрия д		
полученном растворе	,	1
a. 6,3%	В.	6,7%
б. 6,5%		6,9%
13. Степень окисления кислотообразующего элем		•
a1		+1
б3		+3
14. Какой объём газа выделиться при растворении		
фосфорной кислоты?		1
а. 3,36 л.	В.	5,6 л.
б. 4,48 л.		6,72 л.
,		

15. Создавать аллотропные соединения НЕ способ	бны	атомы
а. азота	B.	фосфора
б. серы	Γ.	кислорода
16. К кислотным несолеобразующим оксидам отно		
a. Al_2O_3		NO_2
б. P ₂ O ₅		CO_2
17. В 200 мл. воды (р=1гр./мл.) растворили хлорид	д на	атрия массой 40 гр. Массовая доля соли
в растворе равна		
a. 15,2%		16,7%
б. 16,4%	Γ.	18,4%
18. Схема реакции нейтрализации:		
a. $Ba(OH)_2 + H_2SO_4 \rightarrow$		HCl + CaO →
$6. Al2O3 + N2O \rightarrow$		LiOH + HF →
19. Рассчитать содержание кальция в образце каль	ьци	та массой 200 гр. с массовой долей
карбоната кальция 80%.		
a. 30%		34%
б. 32%		36%
20. Определить общую массовую долю веществ, о	-	ž •
взаимодействия 80 гр. 12%-ного раствора гидрокс	ида	а лития и 210 гр. 14%-ного раствора
серной кислоты.		0.007
a. 7,6%		9,8%
б. 8,4%	Γ.	11%
21. Наивысшая валентность хрома		5
a. 2	B.	
б. 4 22 Т- жилин	Γ.	b
22. Твёрдым веществом при н.у. является	_	IID.
a. HCl		HBr
6. HF		HI
23. Сера выступает восстановителем в соединении		
а. K₂Sб. H₂S	В.	
2		H ₂ SO ₃
24. Количество электронов на предпоследнем элек а. 2	ктр В.	
6. 5	в. Г.	
25. С каким из перечисленных веществ НЕ реагир		
$a. H_2O$		LiOH
а. 11 ₂ O б. CO ₂		Al_2O_3
26. При сгорании кусочка технической серы массо		2 3
Определить содержание серы в техническом образ		
96,7%.	эцс	, сели выход реакции горония составил
a. 92%	D	96%
б. 94%		98%
27. Содержание натрия в алюминате натрия соста		
а. 44,5%		47,9%
б. 46,2%		48,2%
28. К амфотерным оксидам не относят	1.	,_,,
a. PbO ₂	В	Sb_2O_3
б. SnO ₂		FeO ₂
Общая и неорганич		
оощал и псоргани		AND ANDVILLE

Вари	IAHT Z
1. Выбрать схему реакции замещения:	
a. $KOH + Mg \rightarrow$	B. $HF + Hg \rightarrow$
б. $ZnO + CaO$ →	Γ . Al + Fe ₂ O ₃ \rightarrow
2. К двусоставным кислотам относят	
а. борную	в. мышьяковистую
б. хлорноватистую	г. кремниевую
3. При термическом разложении кусочка извес	стняка массой 150 гр. с массовой долей
карбоната кальция 80% выделился газ объёмог	м 25 л. Выход реакции составил
a. 91%	в. 93%
б. 92%	г. 94%
4. К кислым солям относится	
a. $(Al(OH)_2)_2CO_3$	в. (MnOH) ₃ PO ₄
б. KHSO ₃	г. BaSO ₄
5. К односоставным основаниям относят	
а. бариевую воду	в. едкий натр
б. гашёную известь	г. гидроксид цинка
6. В реакции $H_2S + O_2 \rightarrow H_2O + SO_2 \uparrow + \Delta Q$	химическое равновесие сместится влево при
а. повышении давления	в. повышении концентрации O_2
б. понижении давления	г. понижении температуры
7. Массовая доля кислотообразующего элемен	
a. 23,6%	в. 25,4%
б. 24,2%	г. 26,7%
8. С каким из перечисленных металлов реагир	ует железный колчедан?
а. никель	в. цинк
б. свинец	олово
9. Формула гидроксохлорита кальция	
a. CaOHClO	в. CaOHClO ₃
б. CaOHClO ₂	г. CaOHClO ₄
10. Количество электронов на предпоследнем	электронном уровне атома кальция равно
a. 15	в. 17
б. 16	г. 18
11. Максимальная валентность фтора равна	
a. 1	в. 5
б. 2	г. 7
12. К щелочным оксидам не относят	
a. CaO	B. SrO
б. Li ₂ O	г. Fr ₂ O
13. Число, которое показывает, во сколько раз	
1/12 части абсолютной атомной массы атома у	лглерода — это
а. относительная атомная масса	в. относительная молекулярная масса
б. массовая доля элемента в веществе	г. молярная масса вещества
14. Ряд, в котором элементы расположены по	мере понижения степени
электроотрицательности:	
а. бериллий, магний, кальций, скандий	в. бериллий, литий, натрий, калий

г. калий, натрий, магний, кальций

б. рубидий, калий, кальций, натрий

15.	При взрыве в вакуумном сосуде 1,2 гр. вод	цорода і	и 5,6 гр. азота объём смеси
	а. уменьшился на 25%	_	уменьшился на 50%
	б. увеличился на 10%	Γ.	не изменился
16.	Плотность паров галогеноводорода по возд	духу ра	вна 4,41. Этот галогеноводород
	a. HF		HBr
	б. HCl	Γ.	HI
17.	С олеумом при н.у. не реагирует		
	а. вода	В.	едкий кали
	б. оксид натрия	Γ.	оксид алюминия
18.	Неодносоставной кислотой является		
	а. бромоводородная	В.	синильная
	б. сероводородная	Γ.	йодоводородная
19.	С каким из перечисленных веществ при н.		•
	a. MgSO ₄	-	H_2O
	б. КОН	Γ.	$\overline{\mathrm{N}_{2}}$
20.	Наибольшее содержание кислорода в		-
	а. глинозёме	В.	жжёной магнезии
	б. кремнезёме	Γ.	жжёной извести
21.	Бескислородным кислотам относят		
	а. мышьяковистую	В.	синильную
	б. борную	Γ.	хлорную
22.	Плотность по водороду газовой смеси из 5	6 л. арг	она и 28 л. азота при н.у. равна
	a. 16	_	19,5
	б. 18	Γ.	22
23.	В воде объёмом 200 мл. (р=1 гр./мл.) раств	ворили	образец соли, получив раствор с
	ссовой долей соли 20%. К этому раствору д	-	- · · · · · · · · · · · · · · · · · · ·
	тоговом растворе составляет		*
	a. 10%	В.	15%
	б. 12,5%	Γ.	17,5%
24.	Определить массовую долю соли, образова	авшейс	я при взаимодействии 140 гр. 20%-ного
pac	створа едкого натра и 145,5 гр. 31%-ного ра	створа	фосфорной кислоты.
	a. 26,5%	В.	28,5%
	б. 27,5%	Γ.	29,5%
25.	Жидкостью при н.у. является		
	a. HBr	В.	HF
	б. H ₂ S	Γ.	HC1
26.	Сумма коэффициентов и реакции сплавлен	ния окс	идов цинка и железа (III) равна
	a. 3	В.	5
	б. 4	Γ.	6
27.	Объёмные доли азота, фтора и хлора в газо	ообразн	юй смеси соответственно равны 2:2:
1. 1	Массовая доля азота в смеси равна	-	-
	a. 27,6%	В.	28,9%
	б. 28,2%	Γ.	31,4%
28	. При н.у. кислоты НЕ реагируют с		
	а. амфотерными основаниями и	В.	солями и гидроксидами
	щелочами	Γ.	
	б. щелочами и основными оксидами		металлами

Эталон ответов на тест «Общая и неорганическая химия»

Вариант 1

1	2	3	4	5	6	7	8	9	10
Γ	a	б	Γ	Γ	Γ	Γ	В	В	В
11	12	13	14	15	16	17	18	19	20
a	В	Γ	В	a	В	В	Γ	б	Γ
21	22	23	24	25	26	27	28		
Γ	Γ	Γ	Г	В	В	В	Γ		

Вариант 2

1	2	3	4	5	6	7	8	9	10
Γ	Γ	В	б	В	б	В	В	б	Γ
11	12	13	14	15	16	17	18	19	20
a	В	a	В	В	Γ	В	б	б	б
21	22	23	24	25	26	27	28		
В	б	б	В	a	В	a	Γ		

7. КОМПЛЕКТ УПРАЖНЕНИЙ

ТЕМА 1. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

- 1. Определите фактор эквивалентности гидроксида бария, мышьяковой кислоты. Определите молярную массу эквивалента сульфата алюминия.
- 2. Дайте определение эквивалента вещества, фактора эквивалентности. Определите фактор эквивалентности и молярную массу эквивалента угольной кислоты, сульфата железа(III).
- 3. Как взаимосвязаны моль, масса и молярная масса вещества? Сколько моль составляет 684г сульфата алюминия, сколько молекул содержится в этом количестве? Что показывает число Авогадро?
- 4. Определите эквивалент, фактор эквивалентности и рассчитайте молярную массу эквивалента гидроксида железа(II), сульфата хрома, оксида азота(V).
- 5. Определите количество фосфата магния, если масса его составляет 528 г, и молярную массу его эквивалента, определив фактор эквивалентности фосфата магния.

ТЕМА 2. СТРОЕНИЕ АТОМА И ХИМИЧЕСКАЯ СВЯЗЬ

- 1. Электронные формулы атомов имеют окончание: a) ...3 d^2 4 s^2 ; б) ...4 d^{10} 5 s^1 ; в) ...5 s^2 5 p^6 . Составьте электронные формулы атомов этих элементов. Изобразите распределение электронов по квантовым ячейкам в атоме «а».
- 2. Напишите электронную формулу элемента, атом которого содержит на 3d подуровне один электрон. В каком периоде, группе и подгруппе он находится и как называется?
- 3. Укажите значения квантовых чисел n и 1 для внешних электронов в атомах элементов с порядковыми номерами 11, 14, 23. Напишите электронное строение атома с порядковым номером 23.
- 4. Напишите полные электронные формулы элементов, имеющих окончание: a) $...2s^2 2p^3$; б)... $3d^3 4s^2$; в) ... $3d^5 4s^1$. Укажите валентные электроны.
- 5. Внешний электронный уровень атома элемента имеет конфигурацию... $6s^26p^3$. Напишите полную электронную конфигурацию элемента. Назовите элемент и укажите его валентные электроны.

8. КОМПЛЕКТ ТЕРМИНОЛОГИЧЕСКИХ ДИКТАНТОВ

АКЦЕПТОРНЫЕ (ЭЛЕКТРОНОАКЦЕПТОРНЫЕ) СВОЙСТВА - способность атомов элемента притягивать (удерживать) электроны.

АЛЛОТРОПИЯ - явление существования химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. Эти простые вещества, различные по строению и свойствам, называются аллотропными формами или аллотропными модификациями.

АМОРФНОЕ вещество - не кристаллическое вещество, т.е. вещество, не имеющее кристаллической решетки.

АМФОТЕРНОСТЬ - способность некоторых химических соединений проявлять кислотные или основные свойства в зависимости от веществ, которые с ними реагируют.

АНИОНЫ - отрицательно заряженные ионы.

ATOM - мельчайшая частица химического элемента, сохраняющая его химические свойства. Атом построен из субатомных частиц - протонов, нейтронов, электроно.

ВАЛЕНТНОСТЬ - число электронных пар, с помощью которых атом данного элемента связан с другими атомами.

ВОДОРОДНАЯ СВЯЗЬ - один из видов межмолекулярных связей. Обусловлена в основном электростатическими силами. Для возникновения водородной связи нужно, чтобы в молекуле был один или несколько атомов водорода, связанных с небольшими, но электроотрицательными атомами, например: O, N, F.

ВОССТАНОВЛЕНИЕ (вещества) - химическая реакция, при которой электроны передаются данному веществу.

ВОССТАНОВИТЕЛЬ - вещество, способное отдавать электроны другому веществу (окислителю).

ГИДРАТАЦИЯ - связывание молекул (атомов, ионов вещества) с водой, не сопровождающееся разрушением молекул воды.

ГИДРАТЫ - соединения вещества с водой, имеющие постоянный или переменный состав и образующиеся в результате гидратации.

ДИФФУЗИЯ - перенос частиц вещества, приводящий к выравниванию его концентрации в первоначально неоднородной системе. Происходит в результате теплового движения молекул.

ДОНОРНЫЕ (ЭЛЕКТРОНОДОНОРНЫЕ) СВОЙСТВА - способность атомов элемента отдавать свои электроны другим атомам.

ЗАКОН АВОГАДРО. Равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. 1 МОЛЬ любого газа при нормальных условиях занимает объем 22,4 л.

ЗАКОН СОХРАНЕНИЯ МАССЫ. Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

ИНГИБИТОРЫ - вещества, замедляющие химические реакции.

ИНДИКАТОРЫ (кислотно-основные) - вещества сложного строения, имеющие разную окраску в растворах кислот и оснований.

ИОНЫ - отрицательно или положительно заряженные частицы, образующиеся при присоединении или отдаче электронов атомами элементов (или группами атомов).

КАТАЛИЗАТОРЫ - вещества, способные ускорять химические реакции, сами оставаясь при этом неизменными.

КАТИОНЫ - положительно заряженные ионы.

КИСЛОТА - сложное вещество, в молекуле которого имеется один или несколько атомов водорода, которые могут быть замещены атомами (ионами) металлов. Оставшаяся часть молекулы кислоты называется кислотным остатком.

КОВАЛЕНТНАЯ СВЯЗЬ - связывание атомов с помощью общих (поделенных между ними) электронных пар. Неполярная ковалентная связь образуется между атомами одного вида. Полярная ковалентная связь существует между двумя атомами в том случае, если их электроотрицательности не одинаковы.

КРИСТАЛЛИЗАЦИЯ - способ очистки вещества путем осаждения его из насыщенного раствора.

КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА. Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных точках пространства кристалла. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой.

МАССОВОЕ ЧИСЛО (A) - сумма числа протонов (Z) и нейтронов (N) в ядре атома какого-либо элемента (A = Z + N).

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ - химическая связь в кристалле между положительно заряженными ионами металла посредством свободно перемещающихся (по всему объему кристалла) электронов с внешних оболочек атомов металла.

МОЛЕКУЛА - наименьшая частица какого-либо вещества, определяющая его химические свойства и способная к самостоятельному существованию. Молекулы состоят из атомов.

МОЛЕКУЛЯРНАЯ ОРБИТАЛЬ - электронное облако, образующееся при слиянии внешних электронных оболочек атомов (атомных орбиталей) при образовании между ними химической связи.

МОЛЕКУЛЯРНОСТЬ РЕАКЦИИ - число исходных частиц, одновременно взаимодействующих друг с другом в одном элементарном акте реакции.

МОЛЯРНАЯ МАССА - масса одного моля вещества в граммах называется молярной массой вещества или грамм-молем (размерность г/моль).

МОЛЯРНОСТЬ (раствора) - концентрация раствора, выраженная в молях растворенного вещества на 1 литр раствора. Обозначается буквой М.

НЕЙТРОН - электрически нейтральная элементарная (т.е. неразделимая) частица с массой 1,67.10- 27 кг. Нейтроны вместе с протонами входят в состав атомных ядер.

НЕПОДЕЛЕННАЯ ПАРА электронов - внешняя электронная пара атома, не участвующая в образовании химической связи.

ОКИСЛЕНИЕ (вещества) - химическая реакция, при которой электроны отбираются у данного вещества окислителем.

ОКИСЛИТЕЛЬ - вещество, способное отнимать электроны у другого вещества (восстановителя).

ОКСИДЫ - сложные вещества, состоящее из атомов двух элементов, один из которых - кислород.

ОКСИДЫ КИСЛОТНЫЕ - оксиды, которые взаимодействуют с основаниями с образованием соли и воды.

ОКСИДЫ ОСНОВНЫЕ - оксиды, которые взаимодействуют с кислотами с образованием соли и воды.

ОСНОВАНИЕ - сложное вещество, в котором атом (или атомы) металла связаны с гидрокси-группами (ОН-группами). Растворимые основания могут распадаться в растворе с образованием гидроксид-ионов ОН-.

ОСНОВАНИЕ АМФОТЕРНОЕ - сложное вещество, способное проявлять как кислотные, так и основные свойства в зависимости от партнера по реакции.

ПРАВИЛО ГУНДА. При заселении орбиталей с одинаковой энергией (например, пяти d-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных ("пустых") орбиталях, после чего начинается заселение орбиталей вторыми электронами.

ПРАВИЛО ОКТЕТА. Атомы элементов стремятся к наиболее устойчивой электронной конфигурации. Самая распространенная устойчивая электронная конфигурация – с завершенной внешней электронной оболочкой из 8 электронов (с *октетом*электронов).

ПРИНЦИП ПАУЛИ. (3*АПРЕТ ПАУЛИ*). Никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел n, l, m и s.

ПРОСТОЕ ВЕЩЕСТВО - вещество, которое состоит из атомов только одного элемента или из молекул, построенных из атомов одного элемента.

ПРОТОН - устойчивая элементарная (т.е. неразделимая) частица с элементарным (т.е. наименьшим из возможных) положительным электрическим зарядом и массой 1,67.10- 27 кг. Протоны вместе с нейтронами входят в состав атомных ядер.

РАСТВОРИМОСТЬ - способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

РАСТВОРИТЕЛЬ. Из двух или нескольких компонентов раствора растворителем называется тот, который взят в большем количестве и имеет то же агрегатное состояние, что и у раствора в целом.

РЕАГЕНТЫ - исходные вещества в химической реакции.

СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы. Имеет размерность моль/л сек-1.

СЛОЖНОЕ ВЕЩЕСТВО - вещество, которое состоит из молекул, построенных из атомов разных элементов.

СМЕСЬ - вещество, состоящее из молекул или атомов двух или нескольких веществ (неважно - простых или сложных). Вещества, из которых состоит смесь, могут быть разделены. Примеры: воздух, морская вода, сплав двух металлов, раствор сахара и т.д.

СОЛИ - сложные вещества, в которых атомы металла связаны с кислотными остатками.

СОЛИ КИСЛЫЕ - соли, которые помимо ионов металла и кислотного остатка содержат ионы водорода.

СОЛИ ОСНОВНЫЕ - соли, которые помимо ионов металла и кислотного остатка содержат гидроксильные группы (ОН-группы).

СТЕПЕНЬ ОКИСЛЕНИЯ. При образовании химических связей между атомами электроны частично передаются от менее электроноакцепторных атомов к более электроноакцепторным атомам. Количество отданных или принятых атомом электронов называется степенью окисления атома в молекуле.

ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ:

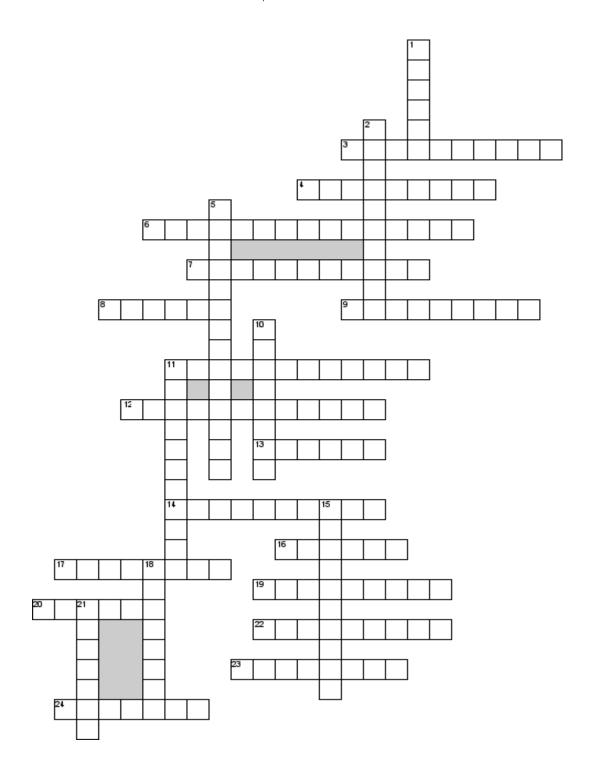
- *СОЕДИНЕНИЯ* когда два (или более) вещества-реагента соединяются в одно, более сложное вещество;
- *РАЗЛОЖЕНИЯ* когда одно сложное исходное вещество разлагается на два или несколько более простых;
- *ОБМЕНА* когда реагенты обмениваются между собой атомами или целыми составными частями своих молекул.
- *ЗАМЕЩЕНИЯ* реакции обмена, в которых участвует какое-либо простое вещество, замещающее один из элементов в сложном веществе;
- *НЕЙТРАЛИЗАЦИИ* (важная разновидность реакций обмена): реакции обмена между кислотой и основанием, в результате которых образуется соль и вода;
- *ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ* реакции всех перечисленных выше типов, в которых происходит изменение степени окисления каких-либо атомов в реагирующих молекулах.

ЩЕЛОЧЬ - растворимое в воде сильное основание. Все щелочи (NaOH, KOH. Ba(OH)2) в растворах распадаются на катионы металлов и гидроксид-ионы OH-.

ЭКЗОТЕРМИЧЕСКИЕ РЕАКЦИИ (от греческого ехо - вне, снаружи) - химические реакции, протекающие с выделением тепла.

ЭЛЕКТРОН - устойчивая элементарная (т.е. неразделимая) частица с элементарным (т.е. наименьшим из возможных) отрицательным электрическим зарядом и массой 9,11.10-31 кг.

ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ - распределение электронов по энергетическим уровням, существующим в электронном облаке атома. Электронную конфигурацию описывают разными способами: а) с помощью электронных формул, б) с помощью орбитальных диаграмм (см. "электронная формула", электронная ячейка").

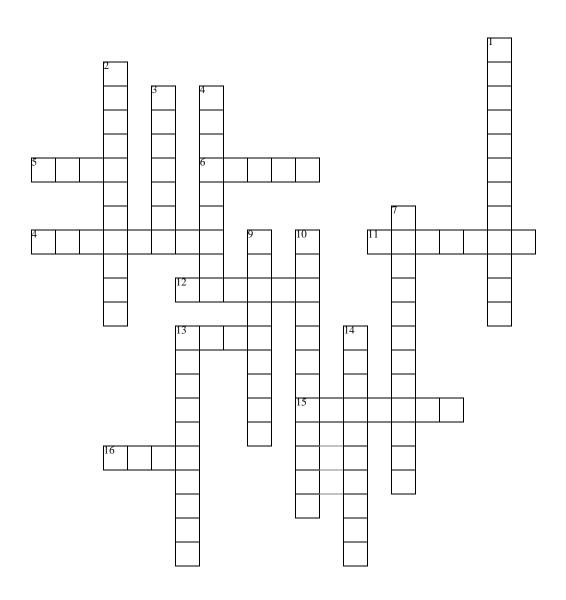

ЭЛЕКТРОННАЯ ПАРА - два электрона, осуществляющие химическую связь. См. также "неподеленная пара".

ЭЛЕКТРОННАЯ ФОРМУЛА - запись распределения имеющихся в атоме электронов по энергетическим уровням и орбиталям. Например, электронная формула кислорода (элемент номер 8, атом содержит 8 электронов): $1s^2 2s^2 2p^4$.

ЭНДОТЕРМИЧЕСКИЕ РЕАКЦИИ (от греческого endon - внутри) - химические реакции, протекающие с поглощением тепла.

9. КОМПЛЕКТ КРОССВОРДОВ

«Общие положения»


По горизонтали:

- 3. Природный процесс поступления кислорода в атмосферу нашей планеты
- 4. Группа веществ, содержащих в своём составе кислород в виде -о-о-
- 6. Какие реакции происходят с выделением теплоты
- 7. Химическая связь, образованная перекрытием пары валентных электронных облаков
- 8. Прозрачный аморфный материал, изготовленный из кварцевого песка, соды и известняка
- 9. Автор планетарной модели строения атома
- 11. Вещества, изменяющие скорость химической реакции, но при этом не расходуются
- 12. Реакции, в которых реагирующие вещества отделены друг от друга поверхностью раздела
- 13. Название аниона азотной кислоты
- 14. Явление, при котором атомы одного и того же химического элемента образует несколько простых веществ
- 16. Химический элемент, находится под номером 15 в таблице д.и. Менделеева
- 17. Самый распространенный неметалл земной коры
- 19. Процесс, при котором простые вещества образованы одним и тем же химическим элементом
- 20. Летучее водородное соединение фосфора
- 22. Реакции, протекающие при данных условиях в двух противоположных направлениях прямом и обратном
- 23. Активный металл, который благодаря наличию на своей поверхности оксидной пленки не корродирует даже во влажном воздухе
- 24. Совокупность электронов в атоме с одинаковым запасом энергии

По вертикали:

- 1. Используется при малокровии и входит в состав гемоглобина
- 2. Реакции, в которых отсутствует поверхность раздела между реагирующими веществами (все вещества образуют однородную среду)
- 5. Восстановление металлов из их оксидов с помощью водорода
- 10. Общее название элементов седьмой группы главной подгруппы
- 11. Роль mno2 в реакции 2н2о2 2н2о + O2
- 15. Свойство металла покрываться защитной пленкой в концентрированной серной кислоте
- 18. Оксиды, которым соответствуют основания
- 21. Как иначе называют нитраты натрия, калия, кальция и аммония

«Неметаллы»

По горизонтали:

- 5. Химический элемент, находится под номером 15 в таблице Д.И. Менделеева.
- 8. Как иначе называют хлорид аммония?
- 6. Какой фосфор опасен для жизни?
- 12. Название аниона азотной кислоты.
- 13. Химический элемент, атомы которого входят в состав белка.
- 16. Вещество самый химически активный галоген.
- 11. Как иначе называют нитраты натрия, калия, кальция и аммония? поверхностью раздела.
- 15. Кристаллические решетки, в узлах которых находятся отдельные атомы, связанные между собой ковалентными связями.

По вертикали:

- 2. Процесс, при котором простые вещества образованы одним и тем же химическим элементом.
- 3. Как называют твёрдые, тугоплавкие вещества, содержащие азот?
- 4. Вздутия на корнях бобовых растений, способные усваивать азот.
- 9. Реакции, протекающие при данных условиях в двух противоположных направлениях прямом и обратном.
- 13. Явление, при котором атомы одного и того же химического элемента образует несколько простых веществ.
- 10. Вещества, изменяющие скорость химической реакции, но при этом не расходуются.
- 1. Кристаллическая решётка белого фосфора.
- 7. Реакции, в которых реагирующие вещества отделены друг от друга
- 14. Реакции, в которых отсутствует поверхность раздела между реагирующими веществами (все вещества образуют однородную среду).

10. КОМПЛЕКТ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

Вещества и атомы химических элементов Вариант 1

1. Составьте уравнения реакций:

$$Ca + ... \rightarrow CaO$$

 $Li_2O + ... \rightarrow LiOH$
 $SO_3 + ... \rightarrow Na_2SO_4 + H_2O$

- **2.** Какие из следующих оксидов реагируют с водой: Li_2O ; SiO_2 ; P_2O_5 ?
- **3.** Напишите уравнения химических реакций: $Ca \rightarrow CaO \rightarrow Ca(OH)_2$
- **4.** Напишите уравнения реакций: $Zn \rightarrow ZnCl_2 \rightarrow Zn(OH)_2 \rightarrow ZnO$
- 5. Что такое оксиды?

Вещества и атомы химических элементов Вариант 2

1. Составьте уравнения реакций:

$$\text{Li} + ... \rightarrow \text{Li}_2\text{O}$$

 $\text{Li}_2\text{O} + ... \rightarrow \text{CuCl}_2 + \text{H}_2\text{O}$
 $\text{Al} + ... \rightarrow \text{Al}_2\text{O}_3$

- 2. Какие из следующих оксидов реагируют с водой: BaO; CuO; SO₃?
- **3.** Напишите уравнения химических реакций: $Cu \rightarrow CuO \rightarrow CuSO_4$
- **4.** Напишите уравнения реакций: $Ca \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCl_2$
- 5. Что такое основания?

Вещества и атомы химических элементов Вариант 3

1. Составьте уравнения реакций:

$$\begin{split} Na_2O + \ldots &\rightarrow NaOH \\ P_2O_5 + \ldots &\rightarrow H_3PO_4 \\ MgO + \ldots &\rightarrow MgCl_2 + H_2O \end{split}$$

- **2.** Какие из следующих оксидов реагируют с водой: K_2O ; Fe_2O_3 ; Mn_2O_7 ?
- **3.** Напишите уравнения химических реакций: $Mg \rightarrow MgO \rightarrow Mg(OH)_2$
- **4.** Напишите уравнения реакций: $Fe \rightarrow Fe_2(SO_4)_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3$
- 5. Что такое основания?

Вещества и атомы химических элементов Вариант 4

1. Составьте уравнения реакций:

$$PH_3 + ... \rightarrow P_2O_5$$

$$K + ... \rightarrow K_2O$$

$$C + ... \rightarrow CO_2$$

- **2.** Какие из следующих оксидов реагируют с водой: Na_2O ; Al_2O_3 ; N_2O_5 ?
- **3.** Напишите уравнения химических реакций: $P \rightarrow P_2O_5 \rightarrow H_3PO_4$
- **4.** Напишите уравнения реакций: $Al \rightarrow Al_2O_3 \rightarrow Al_2(SO_4)_2 \rightarrow Al(OH)_3$
 - 5. Что такое оксиды?

11. КОМПЛЕКТ КАРТОЧЕК ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ Классы неорганических соединений

Карточка 1

- 1. Составьте уравнение реакции взаимодействия двух молей гидроксида натрия с одним молем ортофосфорной кислоты. Напишите графическую формулу образовавшейся соли.
- 2. С какими из перечисленных ниже веществ будет реагировать соляная кислота: $Zn(OH)_2$, N_2O_5 , CaO, H_2SO_4 , KOH?
- 3. Назовите соли Zn(NO₃)₂, NaHS, CaOHCl и изобразите их формулы графически.

Карточка 2

- 1. Напишите химическую формулу гидрофосфата кальция и изобразите ее графически.
- 2. Составьте уравнения реакций, с помощью которых можно осуществить указанные ниже превращения: $H_2 \rightarrow NH_3 \rightarrow NH_4OH \rightarrow (NH_4)_2SO_4$.
- 3. Составьте уравнения реакций, доказывающие кислотный характер оксида серы (VI).

Карточка 3

- 1. Напишите уравнения реакций, подтверждающие амфотерные свойства оксида алюминия.
- 2. Какие новые соли можно получить в результате попарного соединения следующих растворов солей: сульфат меди, нитрат серебра, фосфат калия? Составьте уравнения реакций.
 - 3. Осуществите следующие превращения: $Na \rightarrow NaOH \rightarrow Cu(OH)_2 \rightarrow CuO \rightarrow CuSO_4$

Карточка 4

- 1. С какими из перечисленных ниже веществ будет реагировать вода: P_2O_5 , SiO_2 , NH_3 , CaO? Составьте уравнения реакций.
- 2. Какая соль образуется при взаимодействии одного моля гидроксида цинка и двух молей ортофосфорной кислоты? Составьте уравнение реакции и графическую формулу соли.
- 3. Напишите уравнения реакций между соответствующими кислотами и основаниями, приводящих к образованию следующих солей: K_2S , Na_2HPO_4 , CaOHCl.

Карточка 5

- 1. Какая соль образуется при взаимодействии одного моля гидроксида калия с одним молем ортофосфорной кислоты? Напишите уравнение реакции и графическую формулу этой соли.
- 2. Какие кислоты могут быть получены непосредственным взаимодействием с водой следующих оксидов: P_2O_5 , CO_2 , SO_2 ? Составьте уравнения реакций.
- 3. Осуществите следующие превращения: $Fe(OH)_3 \rightarrow Fe_2(SO_4)_3 \rightarrow Fe(NO_3)_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3$.

12. КОМПЛЕКТ ЗАДАЧ

- **1.** При прокаливании известняка массой 13,5г потеря массы составила 5,5г. Вычислите массовую долю карбоната кальция в известняке (известняк кроме CaCO₃ содержит неразлагающиеся вещества).
- **2.** Из перманганата калия массой 7,9г был получен кислород, который прореагировал с магнием. Какая масса оксида магния будет при этом получена?
- **3.** На нейтрализацию 20г раствора гидроксида натрия затрачено 45г раствора соляной кислоты с массовой долей 1,46%. Рассчитайте массовую долю гидроксида натрия в исходном растворе.
- **4.** На частичное восстановление оксида железа (III)массой 120г затратили водород объемом 5,6л (н.у.). Какой оксид железа образовался в результате реакции?
- **5.** В воде массой 250г растворен гидроксид кальция. При действии избытка карбоната калия на этот раствор образовался осадок массой 3г. Вычислите массовую долю гидроксида кальция в исходном растворе.
- **6.** К раствору, содержащему 14,7г серной кислоты, добавили 8,4г гидроксида калия. Раствор упарили досуха. Какая соль осталась после упаривания?
- **7.** При электролизе водного раствора хлорида калия получен гидроксид калия массой 22,4г. Определите массу воды, которая образуется при сгорании водорода, выделившегося в результате электролиза.
- **8.** При взаимодействии 28г неизвестного металла X с 47,4г селена был получен селенид X_2Se_3 . Определите, какой металл был взят для реакции.
- **9.** При взаимодействии 8,1г некоторого металла с кислородом был получен оксид массой 15,3г. Определите, какой металл был взят, если известно, что в оксиде он трехвалентен.
- **10.** Смесь красного и белого фосфора массой 20г обработали сероуглеродом. Не растворившийся остаток отделили и взвесили, его масса составила 12,6г. Вычислите массовую долю белого фосфора в исходной смеси.

13. КОМПЛЕКТ ВОПРОСОВ ДЛЯ УСТНОГО / ПИСЬМЕННОГО ОПРОСА

Семинар 1.

- 1. Основные принципы квантовой теории строения вещества: представления о корпускулярно-волновом дуализме явлений микромира, принцип неопределенности Гейзенберга, уравнение Шредингера, волновая функция, атомная орбиталь.
- 2. Квантовые числа и их характеристика.
- 3. Принципы заполнения орбиталей многоэлектронных атомов в основном состоянии.
- 4. S-, p-, d-, f-элементы и их расположение в периодической системе. Особенности заполнения электронами электронных оболочек у атомов данных электронных семействах.
- 5. Закон Мозли, современная формулировка периодического закона.
- 6. Структура периодической системы. Свойства атомов химических элементов и периодичность их изменения (атомный радиус, энергия ионизации, энергия сродства к электрону, электроотрицательность).
- 7. Значение периодического закона и системы элементов Д.И.Менделеева.
- 8. Природа химической связи, ее виды и основные характеристики (энергия и длинна связи).
- 9. Ковалентная связь, теории ее образования (методы валентных связей и молекулярных орбиталей).
- 10. Свойства ковалентной связи: насыщаемость, направленность, кратность, полярность.
- 11. Гибридизация атомных орбиталей, типы гибридизации, геометрия молекул.
- 12. Донорно-акцепторная связь, механизм ее образования.
- 13. Ионная связь и ее свойства.
- 14. Металлическая связь и ее особенности.
- 15. Водородная связь и ее роль в биологических процессах.
- 16.Силы межмолекулярного взаимодействия (силы Ван-дер-Вальса).

Семинар 2.

- 1. Энергетика химических процессов:
- 2. Термодинамические системы, их классификации.
- 3. Термодинамические параметры и функции состояния системы.
- 4. Внутренняя энергия, І-ый закон термодинамики.
- 5. Стандартная энтальпия образования химического соединения мера его термодинамической устойчивости.
- 6. Термохимические уравнения. Закон Гесса и следствие из него.
- 7. Самопроизвольные процессы, энтропия химической реакции, второй закон термодинамики как критерий направления химической реакции для изолированных систем.
- 8. Энергия Гиббса, как критерий определения возможности и направления реакций.

- 9. Энтальпийный и энтропийный вклады в свободную энергию Гиббса. Их относительная роль.
- 10. Скорость химических реакций: факторы, влияющие на скорость химической реакции; влияние концентрации реагирующих веществ; закон действующих масс; влияние температуры; правило Вант-Гоффа; энергия активации, уравнение Аррениуса;
- 11. Химическое равновесие и условия его смещения, константа равновесия.
- 12.Скорость химических реакций и химическое равновесие в гетерогенных системах: особенности кинетики гетерогенных реакций; химическое равновесие в гетерогенных системах; фазовые равновесия.
- 13. Механизмы химических реакций: одностадийные реакции; сложные реакции; колебательные реакции; цепные реакции.
- 14. Катализ. Механизмы действия гомогенного и гетерогенного катализа.

Семинар 3.

- 1. Строение молекулы воды. Вода как растворитель. Химия воды. Жесткость воды и методы ее устранения. Применение воды.
- 2. Классификации дисперсных систем, растворов, физическая и химическая теории растворов.
- 3. Термодинамика растворения, растворимость веществ, растворимость жидких, твердых и газообразных веществ в воде.
- 4. Способы выражения состава растворов.
- 5. Свойства разбавленных растворов неэлектролитов (давление пара растворителя над раствором, температура кипения, температура замерзания, осмотическое давление).
- 6. Растворы электролитов. Теория электролитической диссоциации. Гидратация (сольватация) ионов. Степень диссоциации. Факторы, влияющие на степень электролитической диссоциации.
- 7. Соли, кислоты, основания с точки зрения теории электролитической диссоциации.
- 8. Слабые электролиты. Константа диссоциации. Закон разбавления Оствальда.
- 9. Сильные электролиты, теория сильных электролитов Дебая-Хюккеля, активность, коэффициент активности, ионная сила растворов.
- 10. Ионные уравнения реакций.
- 11. Электролитическая диссоциация молекул воды. Ионное произведение воды. Водородный показатель и гидроксильный показатели.
- 12. Произведение растворимости. Условия образования и растворения осадков.
- 13. Гидролиз солей. Типы гидролиза. Константа и степень гидролиза. Значение гидролиза. Амфотерные гидроксиды, их свойства.
- 14. Комплексные соединения. Структура комплексных соединений. Классификация и номенклатура комплексных соединений. Диссоциация комплексных соединений. Константа нестойкости комплексного иона. Факторы, влияющие на устойчивость комплексных соединений в растворах.

14. КОМПЛЕКТ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 1. Периодический закон Д.И. Менделеева. Электронное строение атомов. Связь электронного строения атомов элементов с их положением в периодической системе.
- 2. Валентность. Степень окисления. Зависимость окислительновосстановительных свойств от степени окисления.
- 3. Типы химических связей (ковалентная, ионная, донорно-акцепторная, водородная). Примеры веществ с разными типами связей.
- 4. Классификация неорганических веществ. Оксиды, основания, кислоты, соли. Их свойства.
- 5. Кислоты и основания с точки зрения теорий Аррениуса, Берстеда-Лоури, Льюиса
- 6. Протолитические кислоты и основания. Понятие о сопряженных кислотах и основаниях.
- 7. Комплексные соединения. Номенклатура и типы комплексных соединений.
- 8. Строение комплексных соединений (ион-комплексообразователь, лиганды, внешняя сфера, внутренняя сфера). Применение комплексных соединений в анализе и медицине.
- 9. ОВР. Типы. Важнейшие окислители и восстановители. Применение ОВР в медицине.
- 10. Растворы. Способы выражения концентраций раствора. Расчет массы вещества и растворителя. Фактор эквивалентности солей, кислот, оснований. Расчет фактора эквивалентности в ОВР.
- 11. Дисперсные системы. Коллоидные растворы. Образование мицелл. Коагуляция и седиментация. Причины вызывающие их.
- 12. Основные положения теории электролитической диссоциации. Сильные и слабые электролиты. Степень диссоциации. Константа диссоциации.
- 13. Ионное произведение воды. Водородный показатель. Основания, кислоты, соли с точки зрения теории электролитической диссоциации.
- 14. Три типа гидролиза солей. Способы усиления и подавления гидролиза. Значение гидролиза.
- 15. Общая характеристика элементов VII группы периодической системы Д.И. Менделеева. Общая характеристика галогенов. Хлор (характеристика элемента, возможные степени окисления, свойства, распространение в природе, способы получения).
- 16. Важнейшие соединения хлора. Хлороводород, соляная кислота, хлориды, их получение и свойства. Кислородные соединения хлора. Качественные реакции на хлорид, бромид и иодид-ионы. Биологическая роль галогенов, применение хлора, йода и их соединений в медицине и народном хозяйстве. Галогены и окружающая среда.
- 17. Общая характеристика элементов VI группы периодической системы Д.И. Менделеева. Общая характеристика халькогенов. Кислород. Аллотропия кислорода. Соединение кислорода с водородом
- 18. Сера. Характеристика, возможные степени окисления, свойства, распространение в природе, способы получения.

- 19. Важнейшие соединения серы. Сероводород. Действие сероводорода на организм. Сульфиды. Оксид (IV) и (VI). Сернистая кислота. Сульфиты. Серная кислота. Химические свойства разбавленной и концентрированной кислоты, техника безопасности при работе. Сульфаты. Тиосерная кислота. Тиосульфат натрия.
- 20. Общая характеристика элементов V группы, главной подгруппы периодической системы Д.И. Менделеева. Азот (характеристика азота, степени окисления, свойства, распространение в природе, получение). Важнейшие соединения азота.
- 21. Фосфор, аллотропия фосфора, физические и химические свойства. Оксиды фосфора. Фосфористая кислота и ее соли. Фосфорная кислота и ее соли. Биологическая роль азота и фосфора. Применение в медицине и народном хозяйстве азота, фосфора и их соединений
- 22. Аммиак, способы получения, физические и химические свойства. Соли аммония, способы получения, свойства. Азотистая кислота. Нитриты. Азотная кислота, способы получения, физические и химические свойства, техника безопасности при работе. Нитраты.
- 23. Общая характеристика элементов IV группы главной подгруппы периодической Менделеева. Углерод системы Д.И. (характеристика углерода, окисления, аллотропия углерода, адсорбция, степени распространение в природе, получение, свойства). Оксиды углерода, их получение, свойства. Угольная кислота и ее соли
- 24. Кремний. Распространение в природе. Оксид кремния (IV). Кремниевая кислота. Силикаты. Биологическая роль углерода. Применение в медицине и народном хозяйстве углерода и его соединений
- 25. Общая характеристика элементов III группы главной подгруппы периодической системы Д.И. Менделеева. Бор (характеристика бора, степени окисления, свойства, распространение в природе, способы получения).
- 26. Алюминий. Характеристика алюминия, степени окисления, распространения в природе, получение, свойства. Соединения алюминия. Амфотерный характер свойств оксида алюминия и гидроксида алюминия. Биологическая роль, применение в медицине и народном хозяйстве соединений алюминия
- 27. Общая характеристика металлов, физические и химические свойства, металлическая связь. Общая характеристика металлов II группы главной подгруппы периодической системы Д.И. Менделеева
- 28. Щелочноземельные металлы. Кальций и магний. Характеристика этих металлов, степени окисления, распространение в природе, получение, свойства. Свойства соединений магния и кальция. Оксиды, гидроксиды, сульфаты, карбонаты. Жесткость воды. Биологическая роль кальция и магния. Применение в медицине и народном хозяйстве магния, кальция и их соединений
- 29. Общая характеристика элементов I группы главной подгруппы периодической системы Д.И. Менделеева. Характеристика натрия и калия, степень окисления, распространение в природе, получение, свойства. Соединения натрия и калия. Оксиды, гидроксиды, соли

- 30. Общая характеристика элементов I группы побочной подгруппы периодической системы Д.И. Менделеева. Характеристика меди и серебра, степени окисления, распространение в природе, получение, свойства. Соединения меди. Оксиды и гидроксиды. Соединения серебра. Оксид серебра. Нитрат серебра. Комплексные и коллоидные соединения серебра. Биологическая роль меди и серебра. Применение в медицине и народном хозяйстве. Качественные реакции на катионы меди и серебра
- 31. Общая характеристика элементов II группы побочной подгруппы периодической системы Д.И. Менделеева. Характеристика цинка и ртути, степени окисления, распространение в природе, получение, свойства. Соединение цинка. Оксид и гидроксид цинка. Амфотерность. Соли цинка. Качественные реакции на катионы цинка
- 32. Соединения ртути. Оксиды ртути. Соли ртути. Качественные реакции на катионы ртути. Биологическая роль цинка, влияние соединений ртути на живые организмы. Применение соединений ртути и цинка в медицине и народном хозяйстве
- 33. Общая характеристика элементов VI группы побочной подгруппы периодической системы Д.И. Менделеева. Характеристика хрома, степени окисления, распространение в природе, получение, свойства. Соединения хрома. Оксиды, гидроксиды. Хроматы. Дихроматы. Окислительные свойства соединений хрома (VI). Биологическая роль хрома. Применение соединений
- 34. Общая характеристика элементов VII группы побочной подгруппы периодической системы Д.И. Менделеева. Характеристика марганца, степени окисления, распространение в природе, получение, свойства. Соединения марганца. Оксиды. Гидроксиды. Марганцовая кислота. Калия перманганат, его окислительные свойства в кислой, нейтральной и щелочной средах. Биологическая роль марганца. Применение калия перманганата в медицине
- 35. Общая характеристика элементов VIII группы побочной подгруппы периодической системы Д.И. Менделеева. Характеристика железа, степень окисления, распространение в природе, получение, свойства. Соединения железа. Оксиды. Гидроксиды. Соли железа. Качественные реакции на катионы железа (II,III). Биологическая роль железа. Применение железа и его соединений в медицине и народном хозяйстве

15. КРИТЕРИИ ОЦЕНИВАНИЯ

КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ ВХОДНОГО КОНТРОЛЯ

(остаточных знаний)

Оценка «5» (отлично) – 100-80% правильных ответов

- из 10 тестов не менее 8 правильных ответов
- из 15 тестов не менее 12 правильных ответов
- из 20 тестов не менее 16 правильных ответов
- из 30 тестов не менее 24 правильных ответов
- из 35 тестов не менее 28 правильных ответов
- из 50 тестов не менее 40 правильных ответов
- из 100 тестов не менее 80 правильных ответов

Оценка «4» (хорошо) – 79-70% правильных ответов

- из 10 тестов не менее 7 правильных ответов
- из 15 тестов не менее 10 правильных ответов
- из 20 тестов не менее 14 ответов правильных
- из 30 тестов не менее 21 правильных ответов
- из 35 тестов не менее 24 правильных ответов
- из 50 тестов не менее 35 правильных ответов
- из 100 тестов не менее 70 правильных ответов

Оценка «3» (удовлетворительно) – 69-60% правильных ответов

- из 10 тестов не менее 6 правильных ответов
- из 15 тестов не менее 9 правильных ответов
- из 20 тестов не менее 12 правильных ответов
- из 30 тестов не менее 18 правильных ответов
- из 35 тестов не менее 21 правильных ответов
- из 50 тестов не менее 30 правильных ответов
- из 100 тестов не менее 60 правильных ответов

Оценка «2» (неудовлетворительно) – менее 60% правильных ответов

- из 10 тестов 5 и менее правильных ответов
- из 15 тестов 10 и менее правильных ответов
- из 20 тестов 11 и менее правильных ответов
- из 30 тестов 17 и менее правильных ответов
- из 35 тестов 20 и менее правильных ответов
- из 50 тестов 29 и менее правильных ответов
- из 100 тестов 59 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ КРОССВОРДОВ

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 вопросов не менее 9 правильных ответов
- из 15 вопросов не менее 14 правильных ответов
- из 20 вопросов не менее 18 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 вопросов не менее 8 правильных ответов
- из 15 вопросов не менее 12 правильных ответов
- из 20 вопросов не менее 16 ответов правильных

Оценка «3» (удовлетворительно) – 79-70% правильных ответов

- из 10 вопросов не менее 7 правильных ответов
- из 15 вопросов не менее 11 правильных ответов
- из 20 вопросов не менее 14 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ ТЕРМИНОЛОГИЧЕСКОГО ДИКТАНТА

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 вопросов не менее 9 правильных ответов
- из 15 вопросов не менее 14 правильных ответов
- из 20 вопросов не менее 18 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 вопросов не менее 8 правильных ответов
- из 15 вопросов не менее 12 правильных ответов
- из 20 вопросов не менее 16 ответов правильных

Оценка «3» (удовлетворительно) – 79-70% правильных ответов

- из 10 вопросов не менее 7 правильных ответов
- из 15 вопросов не менее 11 правильных ответов
- из 20 вопросов не менее 14 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 тестов не менее 9 правильных ответов
- из 15 тестов не менее 14 правильных ответов
- из 20 тестов не менее 18 правильных ответов
- из 30 тестов не менее 27 правильных ответов
- из 35 тестов не менее 31 правильных ответов
- из 50 тестов не менее 45 правильных ответов
- из 100 тестов не менее 90 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 тестов не менее 8 правильных ответов
- из 15 тестов не менее 12 правильных ответов
- из 20 тестов не менее 16 ответов правильных
- из 30 тестов не менее 24 правильных ответов
- из 35 тестов не менее 28 правильных ответов
- из 50 тестов не менее 40 правильных ответов
- из 100 тестов не менее 80 правильных ответов

Оценка «3» (удовлетворительно) – 79-70% правильных ответов

- из 10 тестов не менее 7 правильных ответов
- из 15 тестов не менее 11 правильных ответов
- из 20 тестов не менее 14 правильных ответов
- из 30 тестов не менее 21 правильных ответов
- из 35 тестов не менее 24 правильных ответов
- из 50 тестов не менее 35 правильных ответов
- из 100 тестов не менее 70 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов
- из 30 тестов 20 и менее правильных ответов
- из 35 тестов 23 и менее правильных ответов
- из 50 тестов 34 и менее правильных ответов
- из 100 тестов 69 и менее правильных ответов

КРИТЕРИИ ОЦЕНКИ ТЕОРЕТИЧЕСКОГО КОМПОНЕНТА

- 5 (отлично) обучающийся демонстрирует знания в полном объеме программы основной учебной дисциплины, свободно владеет материалом смежных дисциплин, дает полные ответы на вопросы, выделяя при этом основные и самые существенные положения, приводит точные и полные формулировки, свободно владеет понятийным аппаратом учебной дисциплины, отвечает без наводящих вопросов, мыслит последовательно и логично, способен вести полемику, развивать положения предлагаемые преподавателем.
- **4 (хорошо)** обучающийся демонстрирует знания в полном объеме программы основной учебной дисциплины, в основном владеет материалом смежных учебных дисциплин, понимает предмет разбора, однако дает не вполне исчерпывающие ответы, отвечая на дополнительные наводящие вопросы, владеет понятийным аппаратом учебной дисциплины, мыслит последовательно и логично.
- 3 (удовлетворительно) обучающийся демонстрирует знания основ изучаемой учебной дисциплины, владеет основами смежных учебных дисциплин, понимает предмет разбора, однако дает не вполне исчерпывающие ответы, на наводящие дополнительные вопросы отвечает в целом правильно, но не полно, испытывает затруднения при использовании понятийного аппарата учебной дисциплины.
- **2** (неудовлетворительно) обучающийся не знает значительной части вопросов по основной и смежным учебным дисциплинам, затрудняется систематизировать материал и мыслить логично.

КРИТЕРИИ ОЦЕНКИ РЕШЕНИЯ ПРОБЛЕМНО-СИТУАЦИОННОЙ ЗАДАЧИ

- **5 «отлично»** комплексная оценка предложенной ситуации; знание теоретического материала с учетом междисциплинарных связей, правильный выбор тактики действий; последовательное, уверенное выполнение практических умений в соответствии с алгоритмами действий;
- **4 «хорошо»** комплексная оценка предложенной ситуации, незначительные затруднения при ответе на теоретические вопросы, неполное раскрытие междисциплинарных связей; правильный выбор тактики действий; логическое обоснование теоретических вопросов с дополнительными комментариями педагога; последовательное, уверенное выполнение практических умений в соответствии с алгоритмом действий;
- **3** «удовлетворительно» затруднения с комплексной оценкой предложенной ситуации; неполный ответ, требующий наводящих вопросов педагога; выбор тактики действий, в соответствии с ситуацией, возможен при наводящих вопросах педагога, правильное последовательное, но неуверенное выполнение практических умений в соответствии с алгоритмом действий;
- **2** «неудовлетворительно» неверная оценка ситуации; неправильно выбранная тактика действий, приводящая к ухудшению ситуации, нарушению правил безопасности пациента (клиента аптеки) и медицинского персонала; неправильное выполнение практических умений.

КРИТЕРИИ ОЦЕНКИ РЕФЕРАТА

Критерии качества	0 баллов	2 балла	3 балла	4 балла	5 баллов
Соответствие	Реферат не	Содержание	Содержание	Содержание	Содержание
содержания	соответствуе	реферата не	реферата в	реферата	реферата
реферата теме	т теме	полностью	основном	полностью	полностью
И		соответствуе	соответствует	соответствует	соответствует
поставленным		т теме	теме и задачам	теме и	теме и
задачам				поставленным	поставленным
				задачам	задачам
Полнота	Тема не	Тема раскрыта	Тема	Тема раскрыта,	Тема
раскрытия	раскрыта	недостаточно,	раскрыта	однако	полностью
темы и		использовано	недостаточно	некоторые	раскрыта,
использования		мало	использованы	положения	использованы
источников		источников	не все	реферата	современные
			основные	изложены не	источники
			источники	слишком	литературы в
			литературы	подробно,	достаточном
				требуют	количестве
				уточнения,	
				использованы	
				все основные	
				источники	
				литературы	
Умение	Выводы не	Материал не	Материал	Материал	Материал
обобщить	сделаны	обобщен,	обобщен, но	обобщен,	обобщен,
материал и		выводов нет	выводы	сделаны	сделаны
сделать краткие			громоздкие, не	четкие	четкие и
выводы			четкие	выводы	ясные
					выводы
Иллюстрации,	Иллюстраций	Иллюстрации	Иллюстрации	Иллюстрации	Иллюстрации
ИХ	нет	не	недостаточно	информативны	информативны
информативнос		информативнь	информативны	е, хорошего	е высокого
ТЬ		e	e	качества	качества
Соответствие	Не	Не	Основные	Оформление	Оформление
оформления	соответствует	соблюдены	требования к	реферата	реферата
реферата		основные	оформлению	полностью	полностью
предъявляемым		требования к	реферата	соответствует	соответствует
требованиям		оформлению	соблюдены	предъявляемы	предъявляемы
		реферата		м требованиям	м требованиям

Максимальный балл, который может получить обучающийся за реферат, – **25 баллов.**

Шкала перевода рейтинга в четырёхбалльную шкалу оценок

Оценка	«2»	«3»	« 4 »	«5»
Оценка	неудовлетворительно	удовлетворительно	хорошо	отлично
Первичный балл	0-12	13-16	17-20	21-25

КРИТЕРИИ ОЦЕНКИ ПРЕЗЕНТАЦИЙ

Оценка	5	4	3	2
	Работа полностью завершена	Почти полностью сделаны наиболее важные компоненты работы	Не все важнейшие компоненты работы выполнены	Работа сделана фрагментарно и с помощью педагога
	Работа демонстрирует глубокое понимание описываемых процессов	Работа демонстрирует понимание основных моментов, хотя некоторые детали не уточняются	Работа демонстрирует понимание, но неполное	Работа демонстрирует минимальное понимание
Содержание	Даны интересные дискуссионные материалы. Грамотно используется научная лексика	Имеются некоторые материалы дискуссионного характера. Научная лексика используется, но иногда не корректно.	Дискуссионные материалы есть в наличии, но не способствуют пониманию проблемы. Научная терминология или используется мало или используется некорректно.	Минимум дискуссионных материалов. Минимум научных терминов
	Обучающийся предлагает собственную интерпретацию или развитие темы (обобщения, приложения, аналогии)	Обучающийся большинстве случаев предлагает собственную интерпретацию или развитие темы	Обучающийся иногда предлагает свою интерпретацию	Интерпретация ограничена или беспочвенна
	Везде, где возможно выбирается более эффективный и/или сложный процесс	Почти везде выбирается более эффективный процесс	Обучающемуся нужна помощь в выборе эффективного процесса	Обучающийся может работать только под руководством педагога
	Дизайн логичен и очевиден	Дизайн есть	Дизайн случайный	Дизайн не ясен
Дизайн	Имеются постоянные элементы дизайна. Дизайн подчеркивает содержание.	Имеются постоянные элементы дизайна. Дизайн соответствует содержанию.	Нет постоянных элементов дизайна. Дизайн может и не соответствовать содержанию.	Элементы дизайна мешают содержанию, накладываясь на него.

	Все параметры шрифта хорошо подобраны (текст хорошо читается)	Параметры шрифта подобраны. Шрифт читаем.	Параметры шрифта недостаточно хорошо подобраны, могут мешать восприятию	Параметры не подобраны. Делают текст трудночитаемым
Графика	Хорошо подобрана, соответствует содержанию, обогащает содержание	Графика соответствует содержанию	Графика мало соответствует содержанию	Графика не соответствует содержанию
Грамотность	Нет ошибок: ни грамматических, ни синтаксических	Минимальное количество ошибок	Есть ошибки, мешающие восприятию	Много ошибок, делающих материал трудным для восприятия

Максимальный балл, который может получить обучающийся за презентацию, – **50 баллов.**

Шкала перевода рейтинга в четырёхбалльную шкалу оценок

Оценка	«2»	«3»	« 4 »	«5»
Оцепка	неудовлетворительно	удовлетворительно	хорошо	отлично
Первичный балл	0-32	33-37	38-42	43-50