Приложение к рабочей программе учебной дисциплины ОП.05. Химия

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ОП.05. ХИМИЯ

специальность 31.02.03 Лабораторная диагностика квалификация Медицинский лабораторный техник

Контрольно-оценочные средства по учебной дисциплине ОП.05. Химия разработаны в соответствии с Федеральным государственным образовательным стандартом по специальности среднего профессионального образования 31.02.03 Лабораторная диагностика, утвержденном приказом Министерства образования и науки РФ от 11.08.2014 г. № 970 и рабочей программой соответствующей учебной дисциплины.

Организация-разработчик: ФГБОУ ВО РостГМУ Министерства здравоохранения Российской Федерации, колледж.

Разработчик: *Михайленко Н.В.*, преподаватель высшей квалификационной категории колледжа ФГБОУ ВО РостГМУ Минздрава России.

1. Паспорт комплекта контрольно-оценочных средств

Контрольно-оценочные средства (КОС) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Химия»

КОС включают контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме¹ экзамена

КОС разработаны в соответствии с:

программой подготовки специалистов среднего звена по специальности 31.02.03 Лабораторная диагностика;

программой учебной дисциплины ОП.05. ХИМИЯ

2. Требования к результатам освоения дисциплины

В результате освоения учебной дисциплины обучающийся должен уметь:

- Составлять электронные и графические формулы строения электронных оболочек атомов;
- Прогнозировать химические свойства элементов, исходя из их положения в периодической системе и электронного строения;
- Составлять химические формулы соединений в соответствии со степенью окисления химических элементов;
- Составлять уравнения реакций ионного обмена в молекулярном и ионном виде;
- Решать задачи на растворы;
- Уравнивать окислительно-восстановительные реакции ионноэлектронным методом;
- Составлять уравнения гидролиза солей, определять кислотность среды;
- Составлять названия соединений по систематической номенклатуре;
- Составлять схемы реакции, характеризующие свойства органических соединений;
- Объяснить взаимное влияние атомов.

В результате освоения учебной дисциплины обучающийся должен знать:

- Периодический закон Д.И. Менделеева в свете учения о строении атома, принципы построения периодической системы элементов;
- Квантово-механические представления о строении атомов;
- Общую характеристику s-, p-, d-элементов, их биологическую роль и применение в медицине;
- Важнейшие виды химической связи и механизм их образования;
- Основные положения теории растворов и электролитической диссоциации;
- Протолитическую теорию кислот и оснований;
- Коллигативные свойства растворов;
- Способы выражения концентрации растворов;

.

¹ Соответствует учебному плану специальности СПО

- Алгоритмы решения задач на растворы;
- Буферные растворы и их свойства;
- Теорию коллоидных растворов;
- Сущность гидролиза солей;
- Основные классы органических соединений, их строение, свойства, получение и применение;
- Все виды изомерии.

В результате освоения учебной дисциплины должны быть актуализированы общие компетенции, включающие в себя способность:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес,
- OК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество,
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность,
- OК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития,
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности,
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями,
- ОК 7. Брать ответственность за работу членов команды (подчиненных), за результат выполнения заданий,
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации,
- ОК 9. Ориентироваться в условиях смены технологий в профессиональной деятельности,
- ОК 10. Бережно относиться к историческому наследию и культурным традициям народа, уважать социальные, культурные и религиозные различия,
- ОК 11. Быть готовым брать на себя нравственные обязательства по отношению к природе, обществу и человеку,
- ОК 12. Оказывать первую медицинскую помощь при неотложных состояниях,
- OК 13. Организовывать рабочее место с соблюдением требований охраны труда, производственной санитарии, инфекционной и противопожарной безопасности,
- OК 14. Вести здоровый образ жизни, заниматься физической культурой и спортом для укрепления здоровья, достижения жизненных и профессиональных целей.

- В результате освоения учебной дисциплины должны быть актуализированы профессиональные компетенции, включающие в себя способность:
- ПК 3.1. Готовить рабочее место для проведения лабораторных биохимических исследований,
- ПК 3.2. Проводить лабораторные биохимические исследования биологических материалов; участвовать в контроле качества.

3. Формы и методы контроля и оценки результатов освоения учебной дисциплины

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения	Формы и методы контроля и
(освоенные умения, усвоенные знания)	оценки результатов обучения
1	2
Умения:	
У1. составлять электронные и графические формулы	тестирование,
строения электронных оболочек атомов;	выполнение контрольных заданий/
	упражнений по темам
У2. прогнозировать химические свойства элементов,	тестирование, контроль
исходя из их положения в периодической системе и	выполнения упражнений,
электронного строения;	проверка выполнения
1	внеаудиторной самостоятельной
	работы (рефератов)
У3. составлять химические формулы соединений в	тестирование,
соответствии со степенью окисления химических	терминологический диктант,
элементов;	контроль выполнения
	упражнений,
	проверка выполнения
	внеаудиторной самостоятельной
	работы (рефератов, таблиц, схем);
У4. составлять уравнения реакций ионного обмена в	выполнение упражнений на
молекулярном и ионном виде;	составление реакций;
У5. решать задачи на растворы;	тестирование,
	контроль выполнения
	упражнений,
	проверка выполнения
	внеаудиторной самостоятельной
	работы (решение задач);
У6. уравнивать окислительно-восстановительные	контроль выполнения
реакции ионно-электронным методом;	упражнений, проверка
-	выполнения внеаудиторной
	самостоятельной работы
	(рефератов);
У7. составлять уравнения гидролиза солей, определять	тестирование, контроль
кислотность среды;	выполнения упражнений;
У8. составлять названия соединений по	тестирование,
систематической номенклатуре;	терминологический диктант,
	контроль выполнения
	упражнений;
У9. Составлять схемы реакции, характеризующие	- контроль выполнения
свойства органических соединений;	упражнений, проверка
	выполнения внеаудиторной
	самостоятельной работы
	(рефератов);
У10. объяснить взаимное влияние атомов;	тестирование,

	выполнение контрольных заданий / упражнений по темам;
Знания:	упражнении по темам,
	VOLUME DI MANUEL
31. периодический закон Д.И. Менделеева в свете	
учения о строении атома, принципы построения	· ·
периодической системы элементов;	проверка выполнения
	внеаудиторной
	самостоятельной работы
	(рефератов, мультимедийных
	презентации по теме);
32. квантово-механические представления о строении	тестирование,
атомов;	выполнение контрольных
	заданий / упражнений по
	темам;
33. общую характеристику s-, p-d-элементов, их	контроль выполнения
биологическую роль и применение в медицине;	упражнений,
	проверка выполнения
	внеаудиторной
	самостоятельной работы
	(рефератов, мультимедийных
	презентации по теме);
34. важнейшие виды химической связи и механизм их	
образования;	упражнений,
ооразования,	1
	проверка выполнения внеаудиторной
	1
n.c	(рефератов);
35. основные положения теории растворов и	1
электролитической диссоциации;	упражнений,
	решение задач;
36. протолитическую теорию кислот и оснований;	тестирование,
	контроль выполнения
	упражнений;
37. коллигативные свойства растворов, способы	контроль выполнения
выражения концентрации растворов;	упражнений,
	решение задач;
38. алгоритмы решения задач на растворы;	контроль выполнения
	упражнений,
	решение задач;
39. буферные растворы и их свойства;	тестирование,
or of debutte been poble if its enough in	контроль выполнения
	упражнений,
	, · ·
	проверка выполнения внеаудиторной
	самостоятельной работы
	-
	(логико-дидактических
210	структур по теме занятия);
310. теорию коллоидных растворов;	контроль выполнения
	упражнений,
	решение задач;
311. сущность гидролиза солей;	контроль выполнения

	упражнений,
	решение задач;
312. основные классы органических соединений, их	тестирование,
строение, свойства, получение и применение;	терминологический диктант,
	контроль выполнения
	упражнений;
313. все виды изомерии.	тестирование,
	контроль выполнения
	упражнений,
	проверка выполнения
	внеаудиторной
	самостоятельной работы
	(рефератов).

4. Контроль и оценка освоения учебной дисциплины по темам (разделам), видам контроля

по дисциплине Химия

(наименование дисциплины)

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части), умений, знаний	Наименование оценочного средства
1.	Раздел 1. Строение вещества		
	Тема 1.1. Строение атома и периодический закон Д.И. Менделеева	ОК 5, ПК 3.1, У1, У2, 31	Тестирование, выполнение контрольных заданий/ упражнений по темам, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов, мультимедийных презентации по теме);
	Тема 1.2. Химическая связь и строение молекул	ОК 5, ПК 3.1, У1-3, 31	Тестирование, выполнение контрольных заданий/ упражнений по темам, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов, мультимедийных презентации по теме);
_	Раздел 2. Элементы		77
2.	химической термодинамики		
	Тема 2.1. Основные понятия термодинамики. Первый закон термодинамики	ОК 1, ОК 4-5, ПК 3.1, У1-3, 31-3	тестирование, терминологический диктант, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов, таблиц, схем);
3.	Раздел 3. Растворы. Дисперсные системы		
	Тема 3.1. Растворы и их коллигативные свойства	ОК 1, ОК 4-8, ПК 3.1, 3.2, У1-3, У5, 31-3, 38-9	тестирование, контроль выполнения упражнений, проверка выполнения

			DYLOGY/HVMG-Y-S-Y
			внеаудиторной
			самостоятельной
			работы (логико-
			дидактических
			структур по теме занятия)
			Тестирование,
			контроль выполнения
			упражнений,
			проверка выполнения
	T 22 X		внеаудиторной
	Тема 3.2. Химия дисперсных	ОК 1, ОК 4-8, ПК 3.1, 3.2, У1-3,	самостоятельной
	систем	У5, У10, 31-3, 38-9, 311	работы (логико-
			дидактических
			структур по теме
			занятия), выполнение
			упражнений на
			составление реакций
			Тестирование,
			контроль выполнения
			упражнений,
			проверка выполнения
	Тема 3.3. Способы		внеаудиторной
	выражения количественного	ОК 1, ОК 4-8, ПК 3.1, 3.2, У1-3,	самостоятельной
	состава растворов	У5, У10, 31-3, 38-9, 311	работы (логико-
		<i>y</i> 3, <i>y</i> 10, 31-3, 36-9, 311	дидактических
			структур по теме
			занятия), выполнение
			упражнений на
			составление реакций
	Раздел 4. Элементы		
4.	химической		
	термодинамики		
	* **		Тестирование,
			терминологический
			диктант,
	Тема 4.1. Теория		контроль выполнения
	электролитической		упражнений; контроль
	диссоциации.	ОК 1-9, ПК 3.1-3.2, У1-4, У8,	выполнения
	Протолитическая теория	31-8	упражнений,
	кислот и оснований		проверка выполнения
			внеаудиторной
			самостоятельной работы
			(логико-дидактических
			структур по теме занятия);
			Тестирование,
			контроль выполнения
	T 42 F	OK 1 O FIK 2 1 2 2 XX 4 XX 2	упражнений,
	Тема 4.2. Гидролиз солей	ОК 1-9, ПК 3.1-3.2, У1-4, У7-8,	проверка выполнения
		31-8, 312	внеаудиторной
			самостоятельной
			работы (рефератов).
5.	Раздел 5. Окислительно-		- J J-
	, ,	1	

	восстановительные процессы		
	Тема 5.1. Окислительновосстановительные процессы	ОК 1-9, ПК 3.1-3.2, У1-8, 31-8, 312	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
6.	Раздел 6. Основы строения органических соединений		
	Тема 6.1. Основы строения органических соединений	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-8, 31-8, 312	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (логикодидактических структур по теме занятия), выполнение упражнений на составление реакций
7.	Раздел 7. Углеводороды		
	Тема 7.1. Углеводороды	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-8, 31-8, 312	Контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов);
8.	Раздел 8. Кислородсодержащие органические соединения		
	Тема 8.1. Спирты. Фенолы	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
	Тема 8.2. Оксосоединения	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
	Тема 8.3. Карбоновые кислоты. Гидроксикислоты	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной

			самостоятельной
			работы (рефератов).
	Тема 8.4. Триацилглицерины	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов);
	Тема 8.5. Пространственное строение органических соединений. Оптическая активность	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Гестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
9.	Раздел 9. Углеводы		
	Тема 9.1. Углеводы	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов);
	Тема 9.2. Олигосахариды. Полисахариды	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
10.	Раздел 10. Азотсодержащие		
10.	органические соединения		
	Тема 10.1. Азотсодержащие органические соединения	ОК 1-9, ОК 12-14, ПК 3.1-3.2, У1-9, 31-13	Тестирование, контроль выполнения упражнений, проверка выполнения внеаудиторной самостоятельной работы (рефератов).
	Промежуточная аттестация в форме экзамена	ОК 1-14, ПК 3.1-3.2, У1-10, 31-14	Билеты

5. КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ ДЛЯ ВХОДНОГО КОНТРОЛЯ

Вариант 1.

1.	• Вещества, формулы которых Na ₂ CO ₃	, Ca(HCO ₃) ₂ , K ₂ SiO ₈ , относят к
	1) кислотам	3) основаниям
	2) солям	4) основным оксидам
2.	 В ряду элементов кремний →фосфо 	р →сера →хлор
	1) увеличивается число электронных	
	2) увеличивается степень окисления	
	3) уменьшается число протонов в яд	рах атомов
	4) уменьшается общее число электро	онов в атомах
3.	• Химический элемент, в атомах котор	ого распределение электронов по слоям 2, 8, 7, образует
	высший оксид состава	
	1) $C1_2O_7$	3) $C1_2O_5$
	2) N_2O_5	4) Li ₂ O
4.	• В фосфате калия степень окисления с	росфора равна
	1) +5	3) -3
	2) +3	4) -5
5.		рой $2SO_2 + O_2 \rightarrow 2SO_3$, является реакцией
	1) соединения, обратимой, некаталит	•
		обратимой, каталитической, экзотермической
	3) окисления, необратимой, каталити	-
	4) восстановления, необратимой, нев	каталитической, экзотермической
6.	• Диссоциации сульфата калия соотво	етствует правая часть уравнения
	l) $K^+ + HSO_4^-$	$3)2K^{+} + SO_4^{2-}$
	2) $K^+ + HSO_4^{2-}$	4) $2K^+ + SO_3^{2-}$
7.		творами нитрата серебра и соляной кислотой можно
	выразить сокращенным ионным урав	
	1) $Ag^+ + Cl^- = AgCl \downarrow$ 2) $Ag^+ + NOg = AgNOg$	3) $H^+ + CI^- = HC1$ 4) $H^+ + NO_3^- = HNO_3$
0	2) $Ag^+ + NO_3^- = AgNO_3$	
ð.	• Оксид калия будет взаимодействова	ть с каждым из веществ, указанных
	в ряду	2) G2 - G (OH) - HG1
	1) HNO ₃ , NaCl, H ₂ O	3) S0 ₂ , Ca(OH) ₂ , HC1
Λ	2) Ca(OH) ₂ , H ₂ S, Ag ₂ O	4) P ₂ 0 ₅ , H ₂ O, H ₂ SO ₄
У.	• Необратимая химическая реакция в	
	1) Fe(OH) ₃ и CuSO ₄	3) NaOH и Cu ₂ SO ₄
11	2) Ca(OH) ₂ и CuCl ₂	4) КОН и Cu ₂ S
10	11 1 1	которых AgNOs, КОН, H ₂ SO _{4(конц.)} , Zn, будет реагироват
	1) соляная кислота	3) сульфат натрия4) карбонат кальция
11	2) хлорид меди (II)	
1.	1. Реакции замещения соответству	ет уравнение
	1) $2CH_4 \rightarrow C_2H_2 + 3H_2$ 2) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	
	3) $CH_4 + 2C1_2 \rightarrow CH_2C1_2 + 2HC1$	
	4) $C_2H_4 + H_2 \rightarrow C_2H_6$	
12		унить при резимолейстрии
14	 Оксид углерода (1v) можно пол карбоната кальция и азотной кисл 	
	 карооната кальция и азотной кисл карбоната натрия и гидроксида ба 	
	<i>2)</i> карооната натрия и гидроксида оа	рия

3) углерода и воды

4) гидроксида кальция и угольной кислоты

Вариант 2.

		1
1.	К кислотам относится каждое из вещест	в, указанных в ряду
	1) H ₂ S, HNO ₃ , HBr	3) HC1, H ₂ SO ₄ , KCl
	2) HI, H _s PO ₄ , NH ₃	4) HCl O ₄ , CH ₄ , H ₂ S
2.	•	войств химические элементы расположены в ряду
	1) $P \rightarrow S \rightarrow CI$	$3)O \rightarrow S \rightarrow Se$
	2) $N \rightarrow P \rightarrow As$	4) $S \rightarrow P \rightarrow Si$
3	,	ксида которого R_2O_7 , имеет распределение электронов по
J.	слоям:	ксида которого К207, имеет распределение электронов по
	1)2,8,5	3)2,8,6
	2) 2, 8, 7	4) 2, 8, 8
1		• • •
4.		ления -2 всегда имеет каждый из двух химических
	элементов: 1) О С	3) O. C.
	1) O, S	3) O, C
_	2) S, N	4) S, C1
5.	Реакция горения аммиака, уравнение ко	торой $4NH_3 + 30_2 = 2N_2 + 6H_20$,
	является реакцией	<u>U</u>
	1)без изменения степеней окисления, ка	* *
	2)с изменением степеней окисления, нек	•
	3)с изменением степеней окисления, нек 4)без изменения степеней окисления, не	
_		*
0.	· · · · · · · · · · · · · · · · · · ·	и электролитической диссоциации образуют
	1) NaH ₂ PO ₄ и Na ₃ PO ₄	3) HNO ₃ и NH ₃
_	2) H ₂ SO ₄ и HBr	4) H ₂ SiO ₃ и HC1
7.	-	уравнением $Cu^{2+} + 2OH^{-} = Cu(OH)_{2}$ взаимодействуют
	1) CuSO ₄ и Fe(OH) ₂	3) Cu ₂ SO ₃ и NaOH
	2) CuCl ₂ и Ca(OH) ₂	4) КОН и Cu ₂ S
8.	Оксид магния реагирует с	
	1) CuO	3) HNO _s
	2) Ca(OH) ₂	4) KOH
9.	Основание и соль образуются при взаим	олействии
- •	1) Ba(OH) ₂ u KNO _s	3) Cu(OH) ₂ и ZnCl ₂
	2) NaOH и Fe ₂ (SO ₄) _s	4) КОН и H ₂ SO ₄
10	,	торых BaC1 ₂ , Cu(OH) ₂ , Fe, будет взаимодействовать
1	1) сульфат цинка	3) гидроксид натрия
	2) нитрат магния	4) серная кислота
11		
11	1 1 1 1	одной кислотой и хлоридом оария
	может реагировать	2) Ma(NO).
	1) (NH ₄) ₂ CO ₃	3) Mg(NO _s) ₂
10	2) CuSO ₄	4) AgCl
12	1	ства химических элементов с увеличением атомного
	номера усиливаются, потому что	
	1) не изменяется число электронных	
	2) изменяется валентность элементог	
	3) уменьшается число электронов вн	-
	4) увеличивается число электронов в	нешнего электронного слоя

6. КОМПЛЕКТ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Химическая связь

1. Между атомами, каких элементов хиг	мическая связь будет иметь ионный характер:
а) N и О в) Na	иО
б) Si и CI г) Р и	Br
2. Только ковалентная связь наблюдает	ся в соединении с формулой:
a) Ba(OH) ₂ в) H ₂	SO_4
б) NH ₄ NO ₃ г) Li ₂	CO_3
3. Соотнесите:	,
Название вещества:	Тип связи:
1. кремний	а) металлическая
2. хлорид калия	б) ковалентная полярная
3. сульфид фосфора	в) ионная
4. натрий	г) ковалентная неполярная
5. хлороводород	
6. сера	
4. Неполярная ковалентная связь наблю	дается в следующем веществе:
а) углекислый газ в) ам	миак
	рроформ
5. Найдите вещество, имеющее металли	ческий тип связи:
а) мышьяк в) фо	сфор
б) галлий г) йод	Д
6. Укажите название вещества, молек	улы которого способны к образованию водородных
связей:	
а) водород в) му	равьиная кислота
б) гидрид натрия г) мет	ган
<u>II. Состояние вещества</u>	
1. Вещество, образованное элемент	ами с порядковыми номерами 37 и 17, имеет
кристаллическую решетку:	
а) атомную	в) ионную
б) молекулярную	г) металлическую
	меют кристаллические решетки соответственно:
а) молекулярную, ионную, металлическ	ую
б) атомную, молекулярную, ионную	
в) молекулярную, атомную, металличес	кую
г) атомную, металлическую, молекуляр	ную
3. Какие из перечисленных признаков х	арактерны для веществ с металлическим типом связи:
а) электропроводность	в) диэлектрические свойства
б) теплопроводность	г) пластичность
4. Газы отличаются от твердых веществ	:
а) расстоянием между частицами	в) образованием упорядоченных структур
б) наличием формы, объема	г) наличием кристаллической решетки
IV. Задачи на смеси.	-
1. Найти массовую долю водорода в сер	оной кислоте.
2 11	¥ 1 (5

- 2. Найти массу золота в золотом кольце массой 1,65 г, если доля золота составляет 58,5%.
- 3. Найти объем азота в 100 л воздуха, если содержание его в воздухе составляет 78%.
- 4. Найти массу цинка в 20 г технического цинка, содержащего 10% примесей.
- 5. В 150 г воды растворили 50 г соли. Найти массовую долю соли в полученном растворе.

7. КОМПЛЕКТ УПРАЖНЕНИЙ

- 1. Определите фактор эквивалентности гидроксида бария, мышьяковой кислоты. Определите молярную массу эквивалента сульфата алюминия.
- 2. Дайте определение эквивалента вещества, фактора эквивалентности. Определите фактор эквивалентности и молярную массу эквивалента угольной кислоты, сульфата железа(III).
- 3. Как взаимосвязаны моль, масса и молярная масса вещества? Сколько моль составляет 684г сульфата алюминия, сколько молекул содержится в этом количестве? Что показывает число Авогадро?
- 4. Определите эквивалент, фактор эквивалентности и рассчитайте молярную массу эквивалента гидроксида железа(II), сульфата хрома, оксида азота(V).
- 5. Определите количество фосфата магния, если масса его составляет 528 г, и молярную массу его эквивалента, определив фактор эквивалентности фосфата магния.
- 6. Электронные формулы атомов имеют окончание: а) ...3 d^2 4 s^2 ; б) ...4 d^{10} 5 s^1 ; в) ...5 s^2 5 p^6 . Составьте электронные формулы атомов этих элементов. Изобразите распределение электронов по квантовым ячейкам в атоме «а».
- 7. Напишите электронную формулу элемента, атом которого содержит на 3d подуровне один электрон. В каком периоде, группе и подгруппе он находится и как называется?
- 8. Укажите значения квантовых чисел n и 1 для внешних электронов в атомах элементов с порядковыми номерами 11, 14, 23. Напишите электронное строение атома с порядковым номером 23.
- 9. Напишите полные электронные формулы элементов, имеющих окончание: а) $...2s^2 2p^3$; б)... $3d^3 4s^2$; в) ... $3d^5 4s^1$. Укажите валентные электроны.
- 10. Внешний электронный уровень атома элемента имеет конфигурацию... $6s^26p^3$. Напишите полную электронную конфигурацию элемента. Назовите элемент и укажите его валентные электроны.

8. КОМПЛЕКТ ТЕРМИНОЛОГИЧЕСКИХ ДИКТАНТОВ

АЛЛОТРОПИЯ - явление существования химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. Эти простые вещества, различные по строению и свойствам, называются аллотропными формами или аллотропными модификациями.

АМОРФНОЕ вещество - не кристаллическое вещество, т.е. вещество, не имеющее кристаллической решетки.

АМФОТЕРНОСТЬ - способность некоторых химических соединений проявлять кислотные или основные свойства в зависимости от веществ, которые с ними реагируют.

АНИОНЫ - отрицательно заряженные ионы.

ATOM - мельчайшая частица химического элемента, сохраняющая его химические свойства. Атом построен из субатомных частиц - протонов, нейтронов, электроно.

ВАЛЕНТНОСТЬ - число электронных пар, с помощью которых атом данного элемента связан с другими атомами.

ВОДОРОДНАЯ СВЯЗЬ - один из видов межмолекулярных связей. Обусловлена в основном электростатическими силами. Для возникновения водородной связи нужно, чтобы в молекуле был один или несколько атомов водорода, связанных с небольшими, но электроотрицательными атомами, например: O, N, F.

ВОССТАНОВЛЕНИЕ (вещества) - химическая реакция, при которой электроны передаются данному веществу.

ВОССТАНОВИТЕЛЬ - вещество, способное отдавать электроны другому веществу (окислителю).

ГИДРАТАЦИЯ - связывание молекул (атомов, ионов вещества) с водой, не сопровождающееся разрушением молекул воды.

ГИДРАТЫ - соединения вещества с водой, имеющие постоянный или переменный состав и образующиеся в результате гидратации.

ДИФФУЗИЯ - перенос частиц вещества, приводящий к выравниванию его концентрации в первоначально неоднородной системе. Происходит в результате теплового движения молекул.

ДОНОРНЫЕ (ЭЛЕКТРОНОДОНОРНЫЕ) СВОЙСТВА - способность атомов элемента отдавать свои электроны другим атомам.

ЗАКОН АВОГАДРО. Равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. 1 МОЛЬ любого газа при нормальных условиях занимает объем 22,4 л.

ЗАКОН СОХРАНЕНИЯ МАССЫ. Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

ИНГИБИТОРЫ - вещества, замедляющие химические реакции.

ИНДИКАТОРЫ (кислотно-основные) - вещества сложного строения, имеющие разную окраску в растворах кислот и оснований.

ИОНЫ - отрицательно или положительно заряженные частицы, образующиеся при присоединении или отдаче электронов атомами элементов (или группами атомов).

КАТАЛИЗАТОРЫ - вещества, способные ускорять химические реакции, сами оставаясь при этом неизменными.

КАТИОНЫ - положительно заряженные ионы.

КИСЛОТА - сложное вещество, в молекуле которого имеется один или несколько атомов водорода, которые могут быть замещены атомами (ионами) металлов. Оставшаяся часть молекулы кислоты называется кислотным остатком.

КОВАЛЕНТНАЯ СВЯЗЬ - связывание атомов с помощью общих (поделенных между ними) электронных пар. Неполярная ковалентная связь образуется между атомами одного вида. Полярная ковалентная связь существует между двумя атомами в том случае, если их электроотрицательности не одинаковы.

КРИСТАЛЛИЗАЦИЯ - способ очистки вещества путем осаждения его из насыщенного раствора.

КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА. Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных точках пространства кристалла. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой.

МАССОВОЕ ЧИСЛО (A) - сумма числа протонов (Z) и нейтронов (N) в ядре атома какого-либо элемента (A = Z + N).

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ - химическая связь в кристалле между положительно заряженными ионами металла посредством свободно перемещающихся (по всему объему кристалла) электронов с внешних оболочек атомов металла.

МОЛЕКУЛА - наименьшая частица какого-либо вещества, определяющая его химические свойства и способная к самостоятельному существованию. Молекулы состоят из атомов.

МОЛЕКУЛЯРНАЯ ОРБИТАЛЬ - электронное облако, образующееся при слиянии внешних электронных оболочек атомов (атомных орбиталей) при образовании между ними химической связи.

МОЛЕКУЛЯРНОСТЬ РЕАКЦИИ - число исходных частиц, одновременно взаимодействующих друг с другом в одном элементарном акте реакции.

МОЛЯРНАЯ МАССА - масса одного моля вещества в граммах называется молярной массой вещества или грамм-молем (размерность г/моль).

МОЛЯРНОСТЬ (раствора) - концентрация раствора, выраженная в молях растворенного вещества на 1 литр раствора. Обозначается буквой М.

НЕЙТРОН - электрически нейтральная элементарная (т.е. неразделимая) частица с массой 1,67.10- 27 кг. Нейтроны вместе с протонами входят в состав атомных ядер.

НЕПОДЕЛЕННАЯ ПАРА электронов - внешняя электронная пара атома, не участвующая в образовании химической связи.

ОКИСЛЕНИЕ (вещества) - химическая реакция, при которой электроны отбираются у данного вещества окислителем.

ОКИСЛИТЕЛЬ - вещество, способное отнимать электроны у другого вещества (восстановителя).

ОКСИДЫ - сложные вещества, состоящее из атомов двух элементов, один из которых - кислород.

ОКСИДЫ КИСЛОТНЫЕ - оксиды, которые взаимодействуют с основаниями с образованием соли и воды.

ОКСИДЫ ОСНОВНЫЕ - оксиды, которые взаимодействуют с кислотами с образованием соли и воды.

ОСНОВАНИЕ - сложное вещество, в котором атом (или атомы) металла связаны с гидрокси-группами (ОН-группами). Растворимые основания могут распадаться в растворе с образованием гидроксид-ионов ОН-.

ОСНОВАНИЕ АМФОТЕРНОЕ - сложное вещество, способное проявлять как кислотные, так и основные свойства в зависимости от партнера по реакции.

ПРАВИЛО ГУНДА. При заселении орбиталей с одинаковой энергией (например, пяти d-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных ("пустых") орбиталях, после чего начинается заселение орбиталей вторыми электронами.

ПРАВИЛО ОКТЕТА. Атомы элементов стремятся к наиболее устойчивой электронной конфигурации. Самая распространенная устойчивая электронная конфигурация — с завершенной внешней электронной оболочкой из 8 электронов (с *октетом*электронов).

ПРИНЦИП ПАУЛИ. (3AПРЕТ ПАУЛИ). Никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел n, l, m u s.

ПРОСТОЕ ВЕЩЕСТВО - вещество, которое состоит из атомов только одного элемента или из молекул, построенных из атомов одного элемента.

ПРОТОН - устойчивая элементарная (т.е. неразделимая) частица с элементарным (т.е. наименьшим из возможных) положительным электрическим зарядом и массой 1,67.10- 27 кг. Протоны вместе с нейтронами входят в состав атомных ядер.

РАСТВОРИМОСТЬ - способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

РАСТВОРИТЕЛЬ. Из двух или нескольких компонентов раствора растворителем называется тот, который взят в большем количестве и имеет то же агрегатное состояние, что и у раствора в целом.

РЕАГЕНТЫ - исходные вещества в химической реакции.

СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ - количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы. Имеет размерность моль/л сек-1.

СЛОЖНОЕ ВЕЩЕСТВО - вещество, которое состоит из молекул, построенных из атомов разных элементов.

СМЕСЬ - вещество, состоящее из молекул или атомов двух или нескольких веществ (неважно - простых или сложных). Вещества, из которых состоит смесь, могут быть разделены. Примеры: воздух, морская вода, сплав двух металлов, раствор сахара и т.д.

СОЛИ - сложные вещества, в которых атомы металла связаны с кислотными остатками.

СОЛИ КИСЛЫЕ - соли, которые помимо ионов металла и кислотного остатка содержат ионы водорода.

СОЛИ ОСНОВНЫЕ - соли, которые помимо ионов металла и кислотного остатка содержат гидроксильные группы (ОН-группы).

СТЕПЕНЬ ОКИСЛЕНИЯ. При образовании химических связей между атомами электроны частично передаются от менее электроноакцепторных атомов к более электроноакцепторным атомам. Количество отданных или принятых атомом электронов называется степенью окисления атома в молекуле.

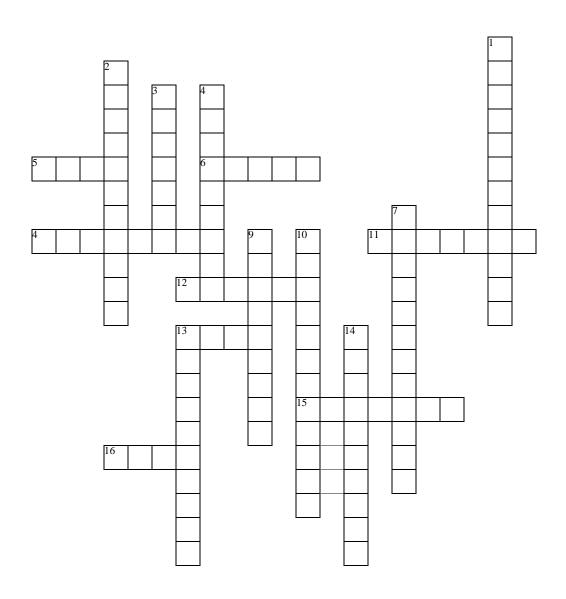
ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ:

- *СОЕДИНЕНИЯ* когда два (или более) вещества-реагента соединяются в одно, более сложное вещество;
- *РАЗЛОЖЕНИЯ* когда одно сложное исходное вещество разлагается на два или несколько более простых;
- *ОБМЕНА* когда реагенты обмениваются между собой атомами или целыми составными частями своих молекул.
- *ЗАМЕЩЕНИЯ* реакции обмена, в которых участвует какое-либо простое вещество, замещающее один из элементов в сложном веществе;
- *НЕЙТРАЛИЗАЦИИ* (важная разновидность реакций обмена): реакции обмена между кислотой и основанием, в результате которых образуется соль и вода;
- *ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ* реакции всех перечисленных выше типов, в которых происходит изменение степени окисления каких-либо атомов в реагирующих молекулах.

ЩЕЛОЧЬ - растворимое в воде сильное основание. Все щелочи (NaOH, KOH. Ba(OH)2) в растворах распадаются на катионы металлов и гидроксид-ионы OH-

ЭКЗОТЕРМИЧЕСКИЕ РЕАКЦИИ (от греческого ехо - вне, снаружи) - химические реакции, протекающие с выделением тепла.

ЭЛЕКТРОН - устойчивая элементарная (т.е. неразделимая) частица с элементарным (т.е. наименьшим из возможных) отрицательным электрическим зарядом и массой 9,11.10-31 кг.


ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ - распределение электронов по энергетическим уровням, существующим в электронном облаке атома. Электронную конфигурацию описывают разными способами: а) с помощью электронных формул, б) с помощью орбитальных диаграмм (см. "электронная формула", электронная ячейка").

ЭЛЕКТРОННАЯ ПАРА - два электрона, осуществляющие химическую связь. См. также "неподеленная пара".

ЭЛЕКТРОННАЯ ФОРМУЛА - запись распределения имеющихся в атоме электронов по энергетическим уровням и орбиталям. Например, электронная формула кислорода (элемент номер 8, атом содержит 8 электронов): $1s^2 2s^2 2p^4$. ЭНДОТЕРМИЧЕСКИЕ РЕАКЦИИ (от греческого endon - внутри) - химические реакции, протекающие с поглощением тепла.

9. КОМПЛЕКТ КРОССВОРДОВ

«Неметаллы»

По горизонтали:

- 5. Химический элемент, находится под номером 15 в таблице Д.И. Менделеева.
- 8. Как иначе называют хлорид аммония?
- 6. Какой фосфор опасен для жизни?
- 12. Название аниона азотной кислоты.
- 13. Химический элемент, атомы которого входят в состав белка.
- 16. Вещество самый химически активный галоген.
- 11. Как иначе называют нитраты натрия, калия, кальция и аммония? поверхностью раздела.
- 15. Кристаллические решетки, в узлах которых находятся отдельные атомы, связанные между собой ковалентными связями.

По вертикали:

- 2. Процесс, при котором простые вещества образованы одним и тем же химическим элементом.
- 3. Как называют твёрдые, тугоплавкие вещества, содержащие азот?
- 4. Вздутия на корнях бобовых растений, способные усваивать азот.
- 9. Реакции, протекающие при данных условиях в двух противоположных направлениях прямом и обратном.
- 13. Явление, при котором атомы одного и того же химического элемента образует несколько простых веществ.
- 10. Вещества, изменяющие скорость химической реакции, но при этом не расходуются.
- 1. Кристаллическая решётка белого фосфора.
- 7. Реакции, в которых реагирующие вещества отделены друг от друга
- 14. Реакции, в которых отсутствует поверхность раздела между реагирующими веществами (все вещества образуют однородную среду).

10. КОМПЛЕКТ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

Вариант 1

Часть А.

1. Шесть электронов во внешнем электронном слое находятся у атома:

- 1) хлора 2) кислорода 3) азота 4) алюминия
- 2. Ковалентная полярная связь образуется между атомами
- 1)лития и кислорода 2)серы и натрия 3)хлора и водорода 4)магния и фтора.
- 3. Такую же степень окисления, как и в SO₂, сера имеет в соединении
- 1) K2SO₄ 2) H2SO₃ 3) (NH4)2S 4) SO₃
- 4. Какую формулу имеет сульфат-ион?
- 1) S^0 2) $SO3^{-2}$ 3) SO_4^{-2} 4) S^{-2}
- 5. Какое уравнение соответствует реакции соединения?
- 1) $K2CO_3 + 2HCl = 2KCI + CO_2 + H_2 O$
- 2) $Fe2O_3 + 3H_2 = 2Fe + 3H_2O$
- 3) $CaCO_3 + CO_2 + H2O = Ca(HCO_3)_2$
- 4) $4HNO_3 = 4NO_2 + O_2 + 2H_2O$
- 6. Выделение газа происходит в результате взаимодействия ионов:
- 1)H+ и NO⁻³ 2) H+ и CO₃⁻² 3) NH₄⁺ и SO₄⁻² 4) NH₄⁺ и Cl⁻¹
- 7. В реакцию с разбавленной серной кислотой вступает:
- 1) медь 2) золото 3) цинк 4) кислород
- 8. Функциональную группу СООН содержит
- 1) этиловый спирт 2) метан 3) уксусная кислота 4) ацетилен
- 9. Верны ли следующие суждения о чистых веществах и смесях?
- А. Минеральная вода является чистым веществом.
- Б. Духи являются смесью веществ.
- 1)верно только А 2) верно только Б 3) верны оба суждения 4) оба суждения неверны
 - 10. Металлические свойства у магния выражены сильнее, чем у
 - 1)бериллия 2)калия 3) кальция 4) натрия

Часть В

В 1. В порядке увеличения числа электронов во внешнем уровне расположены химические элементы следующих рядов:

- 1.Br Cl F 2) C Si Ge 3) Al Si P 4) C N O 5) Te Se S
- В2. Алюминий может взаимодействовать с растворами
- 1) сульфата калия; 2) гидроксида кальция; 3) нитрата аммония; 4) хлорида бария; 5) серной кислоты.
 - ВЗ. Выберите схемы превращений, в которых углерод является восстановителем:

$$1.C^{+4} \rightarrow C^{+2}$$
; 2) $C^{+2} \rightarrow C^{+4}$; 3) $C^{0} \rightarrow C^{-2}$; 4) $C^{-2} \rightarrow C^{-4}$; 5) $C^{-4} \rightarrow C^{0}$.

Часть С

- С 1. 3 г лития растворили в избытке воды. Вычислите объём газа (л), выделившегося в результате реакции (н.у.).
- С 2. 35 г сульфата натрия растворили в 50 г воды. Вычислите массовую долю соли в полученном растворе.

Вариант 2

Часть А 1. Число электронов во внешнем электронном слое атома с зарядом ядра +9 равно 1) 1 2) 2 3) 5 4) 7 2. Ковалентная неполярная связь образуется между атомами 1) азота и водорода 2) серы и кислорода 3) алюминия 4) фосфора 3. Такую же степень окисления, как и в NH3, азот имеет в соединении 1) N_2O_3 2) HNO₃ 3) Ca₃N₂ 4) Ba(NO₃)₂ 4. Какую формулу имеет сульфит-ион? 2) SO_3^{-2} 3) SO_4^{-2} 5. Какое уравнение соответствует реакции соединения? 1) $CO_2 + C = 2CO$ 2) $2H2S + 3O_2 = 2SO_2 + 2H2O$ 3) $2HCl + Ca(OH)_2 = CaCl_2 + 2H2O$ 4) $Zn + 2HCl = ZnCl_2 + H_2 \uparrow$ 6. Выделение газа происходит в результате взаимодействия ионов: 1) Ag^+ и NO_3^- 2) H^+ и SiO_3^{-2} 3) NH_4^+ и NO_3^- 4) H^+ и S^{-2} 7. В реакцию с соляной кислотой вступает: 1) ртуть 2) оксид магния 3) сероводород 4) сульфат бария 8. Функциональную группу –СОН содержит: 1) этиловый спирт 2) метан 3) уксусный альдегид 4) ацетилен 9. Верны ли следующие суждения о чистых веществах и смесях? А. Стекло является смесью вешеств. Б. Бронза является чистым веществом. 1)верно только А 2) верно только Б 3) верны оба суждения 4) оба суждения неверны 10. Металлические свойства у алюминия выражены сильнее, чем у 1) натрия 2)бария бора 4) кальция Часть В В1. В порядке уменьшения числа электронов во внешнем уровне расположены химические элементы следующих рядов: 1.N - O - F 2) C - Si - Ge 3) Al - Mg - Na 4) C - N - O 5) Br - Se - AsВ2. Оксид магния вступает в реакцию: 1) оксидом углерода(IV); 2) оксидом калия; 3) серной кислотой; 4) сульфатом калия. ВЗ. Выберите схемы превращений, в которых углерод является окислителем $5)C^{+4} \rightarrow C^{-4}$ 3) $C^0 \to C^{+2}$ 1) $C^{-2} \to C^{+2}$ 2) $C^{+2} \rightarrow C^{0}$ 4) $C^{-4} \rightarrow C^0$ Часть С

- С 1. 10 г бария растворили в избытке воды. Вычислите объём газа(л), выделившегося в результате реакции (н.у.).
- С 2. 105 г фосфата калия растворили в 500 г воды. Вычислите массовую долю соли в полученном растворе.

11. КОМПЛЕКТ КАРТОЧЕК ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Карточка 1

- 1. Напишите уравнения реакций, подтверждающие амфотерные свойства оксида алюминия.
- 2. Какие новые соли можно получить в результате попарного соединения следующих растворов солей: сульфат меди, нитрат серебра, фосфат калия? Составьте уравнения реакций.
- 3. Осуществите следующие превращения: $Na \rightarrow NaOH \rightarrow Cu(OH)_2 \rightarrow CuO \rightarrow CuSO_4$

Карточка 2

- 1. С какими из перечисленных ниже веществ будет реагировать вода: P_2O_5 , SiO_2 , NH_3 , CaO? Составьте уравнения реакций.
- 2. Какая соль образуется при взаимодействии одного моля гидроксида цинка и двух молей ортофосфорной кислоты? Составьте уравнение реакции и графическую формулу соли.
- 3. Напишите уравнения реакций между соответствующими кислотами и основаниями, приводящих к образованию следующих солей: K_2S , Na_2HPO_4 , CaOHCl.

Карточка 3

- 1. Какая соль образуется при взаимодействии одного моля гидроксида калия с одним молем ортофосфорной кислоты? Напишите уравнение реакции и графическую формулу этой соли.
- 2. Какие кислоты могут быть получены непосредственным взаимодействием с водой следующих оксидов: P_2O_5 , CO_2 , SO_2 ? Составьте уравнения реакций.
- 3. Осуществите следующие превращения: $Fe(OH)_3 \rightarrow Fe_2(SO_4)_3 \rightarrow Fe(NO_3)_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3$.

12. КОМПЛЕКТ ЗАДАЧ

Задачи на определение массовой, объемной и молярной доли.

- 1.В солнечной атмосфере содержится 82% водорода-1 и 18% гелия-4 (по числу атомов). Рассчитайте массовую долю атомарного водорода в атмосфере Солнца. (Ответ: 53% водорода)
- 2.При пропускании 2 л воздуха (н. У.) через склянку с концентрированной серной кислотой масса склянки увеличилась на 0,2 г. Вычислите массовую долю водяных паров в воздухе? (Ответ: 7,7% H2O)

Приготовление растворов веществ с заданной концентрацией или массовой долей

- 1.В каком соотношении по объему смешали 4,2 % раствор гидроксида натрия (плотность 1,045 г/мл) и раствор того же вещества с концентрацией 6,12 моль/л (плотность 1,22), если при этом получился 10,1% раствор. (Ответ: 2:1)
- 2.Какой объем раствора уксусной кислоты с молярной концентрацией 1,98 моль/л (плотность 1,015 г/мл) был добавлен к 10 мл 40,2% раствора того же вещества (плотность 1,05 г/мл), если при этом получился 27,2% раствор (плотность 1,035 г/мл). (Ответ: 8,68 мл)
- 3.Масса соли, которая вводится в организм при вливании 353 г физиологического раствора, содержащего 0,85% по массе поваренной соли, равна? (Ответ:3 г)

Определение количества, массы или объема вещества в растворе по концентрации, доле или другим данным

- 1. Массовая доля нитрата серебра в насыщенном при 20 0 С водном растворе равна 69,5%. Вычислите массу этой соли, которая растворится в 100 г воды при этой же температуре? (Ответ: 228 г AgNO3)
- 2. Какую массу воды надо испарить из 1200 г 20% раствора вещества, чтобы увеличить массовую долю в 1,5 раза? (Ответ: 400 г)

Термодинамика химических реакций

1. Дано термохимическое уравнение синтеза аммиака:

Рассчитайте, сколько теплоты выделится при образовании 0,5 моль аммиака? (Ответ: 23 кДж)

2.В результате реакции. Термохимическое уравнение которой

$$2AgNO3$$
 (т) = $2Ag$ (т) + $2NO2$ (г) + $O2$ (г) – 317 кДж,

поглотилось 15,85 кДж теплоты. Масса, выделившегося серебра равна? (Ответ: 10,8 г)

Скорость химических реакций

1. Реакция между водородом и йодом протекает по уравнению:

H2
$$(\Gamma)$$
 + I2 (Γ) = 2HI (Γ)

Как изменится скорость образования йодоводорода, если концентрацию водорода увеличить в три раза, а йода – в два раза? (Ответ: увеличится в 6 раз)

2.Определите среднюю скорость химической реакции:

$$CO2 + H2 = CO + H2O$$

Если через 80 с после начала реакции молярная концентрация воды была равна 0.24 моль/л, а через 2 мин 07 с стала равна 0.28 моль/л?(Ответ: 0.051 моль/л *мин)

13. КОМПЛЕКТ ВОПРОСОВ ДЛЯ УСТНОГО / ПИСЬМЕННОГО ОПРОСА

- 1. Основные принципы квантовой теории строения вещества: представления о корпускулярно-волновом дуализме явлений микромира, принцип неопределенности Гейзенберга, уравнение Шредингера, волновая функция, атомная орбиталь.
- 2. Квантовые числа и их характеристика.
- 3. Принципы заполнения орбиталей многоэлектронных атомов в основном состоянии.
- 4. S-, p-, d-, f-элементы и их расположение в периодической системе. Особенности заполнения электронами электронных оболочек у атомов данных электронных семействах.
- 5. Закон Мозли, современная формулировка периодического закона.
- 6. Структура периодической системы. Свойства атомов химических элементов и периодичность их изменения (атомный радиус, энергия ионизации, энергия сродства к электрону, электроотрицательность).
- 7. Значение периодического закона и системы элементов Д.И.Менделеева.
- 8. Природа химической связи, ее виды и основные характеристики (энергия и длинна связи).
- 9. Ковалентная связь, теории ее образования (методы валентных связей и молекулярных орбиталей).
- 10. Свойства ковалентной связи: насыщаемость, направленность, кратность, полярность.
- 11. Гибридизация атомных орбиталей, типы гибридизации, геометрия молекул.
- 12. Донорно-акцепторная связь, механизм ее образования.
- 13. Ионная связь и ее свойства.
- 14. Металлическая связь и ее особенности.
- 15. Водородная связь и ее роль в биологических процессах.
- 16.Силы межмолекулярного взаимодействия (силы Ван-дер-Вальса).

14. КОМПЛЕКТ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 1. Квантово-механическая модель атома.
- 2. Периодический закон и периодическая система Д.И. Менделеева в свете учения о строении атома.
- 3. Периодические свойства элементов: энергия ионизации, сродство к электрону, электроотрицательность, радиус атомов, окислительновостановительные свойства.
- 4. Современные представления о периодичности свойств элементов.
- 5. Природа, классификация, экспериментальные характеристики химической связи. Механизмы образования химической связи.
- 6. Гибридизация и пространственная конфигурация молекул.
- 7. Развитие теории химической связи. Влияние химической связи на свойства соединений.
- 8. Основные понятия термодинамики. Первый закон термодинамики. Понятие о самопроизвольных процессах. Энтропия. Второй закон термодинамики. Энергия Гиббса.
- 9. Особенности термодинамики биохимических процессов.
- 10. Механизм образования растворов и их классификация.
- 11. Вода как растворитель. Растворение как физико-химический процесс. Растворимость. Зависимость растворимости различных веществ от природы растворителя, температуры и давления. Коллигативные свойства разбавленных растворов.
- 12. Роль диффузии и осмоса в биологических системах. Дисперсные системы и их классификация.
- 13. Лиофобные и лиофильные коллоидные растворы. Молекулярно-кинетические, оптические, электрические свойства коллоидных растворов.
- 14. Биологическое значение дисперсных систем. Коллоидная защита.
- 15. Массовая доля растворенного вещества. Молярная концентрация. Эквивалент вещества. Фактор эквивалентности. Молярная концентрация эквивалента.
- 16. Теория электролитической диссоциации.
- 17. Равновесие в растворах слабых электролитов. Влияние общего иона и противоиона на равновесие.
- 18.Особенности растворов сильных электролитов. Ионная сила раствора.
- 19. Протолитическая теория кислот и оснований.
- 20. Сущность процесса гидролиза. Степень гидролиза. Смещение равновесия гидролиза.
- 21. Протолитические процессы, протекающие в организме.
- 22. Основные понятия и факторы, влияющие на протекание окислительновосстановительных реакций. Направление протекания окислительновосстановительных реакций.
- 23.Особенности биохимических окислительно-восстановительных процессов в организмах.

- 24. Теория строения органических соединений. Электронная структура атома углерода в органических соединениях.
- 25. Химические связи в органических соединениях. Взаимное влияние атомов в молекуле и электронные эффекты. Пространственная структура и виды изомерии.
- 26. Современное состояние теории строения органических соединений.
- 27. Классификация углеводородов.
- 28. Сравнительная характеристика строения, свойств углеводородов.
- 29. Конформация алканов. Реакции элиминирования.
- 30.Загрязнение окружающей среды соединениями углеводородов и их влияние на организм.
- 31. Кислотность и основность органических соединений.
- 32. Физические и химические свойства спиртов: кислотно-основные свойства, реакции нуклеофильного замещения, реакции элиминирования, реакции окисления.
- 33. Двух- и трехатомные спирты. Фенолы. Ароматические спирты.
- 34. Действие спиртов и фенолов на организм человека.
- 35. Классификация оксосоединений. Номенклатура и изомерия. Способы получения. Физические и химические свойства. Отдельные представители.
- 36. Альдегиды и кетоны важные метаболиты живых систем.
- 37. Классификация карбоновых кислот. Строение карбоксильной группы. Кислотные свойства. Монокарбоновые кислоты: номенклатура, изомерия, способы получения, физические и химические свойства. Дикарбоновые кислоты: номенклатура, изомерия, физические и химические свойства.
- 38.Отдельные представители фенолокислот и оксокарбоновых кислот.
- 39. Липиды. Классификация липидов. Биологическое значение.
- 40.Стереоизомерия. Стереоизомеры конформационные и конфигурационные. Энантиомеры. Диастереомеры.
- 41. Стереоизомерия и биологическая активность.
- 42. Классификация моноз. Стереоизомерия моноз. Мутаротация. Циклические формы. Таутомерия. Свойства моноз.
- 43. Производные моноз. Их значение и биологическая роль в организме.
- 44. Классификация. Строение восстанавливающих и невосстанавливающих сахаров. Свойства отдельных представителей олигосахаридов. Сравнительная характеристика строения и свойств полисахаридов.
- 45. Гетерополисахариды, протеогликаны, гликопротеины.
- 46. Амины: номенклатура и изомерия. Способы получения. Амины органические основания. Аминокислоты: номенклатура, изомерия, кислотно-основные свойства.
- 47. Медико-биологическое значение аминов и аминокислот.

15. КРИТЕРИИ ОЦЕНИВАНИЯ

КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ ВХОДНОГО КОНТРОЛЯ

(остаточных знаний)

Оценка «5» (отлично) – 100-80% правильных ответов

- из 10 тестов не менее 8 правильных ответов
- из 15 тестов не менее 12 правильных ответов
- из 20 тестов не менее 16 правильных ответов
- из 30 тестов не менее 24 правильных ответов
- из 35 тестов не менее 28 правильных ответов
- из 50 тестов не менее 40 правильных ответов
- из 100 тестов не менее 80 правильных ответов

Оценка «4» (хорошо) – 79-70% правильных ответов

- из 10 тестов не менее 7 правильных ответов
- из 15 тестов не менее 10 правильных ответов
- из 20 тестов не менее 14 ответов правильных
- из 30 тестов не менее 21 правильных ответов
- из 35 тестов не менее 24 правильных ответов
- из 50 тестов не менее 35 правильных ответов
- из 100 тестов не менее 70 правильных ответов

Оценка «3» (удовлетворительно) – 69-60% правильных ответов

- из 10 тестов не менее 6 правильных ответов
- из 15 тестов не менее 9 правильных ответов
- из 20 тестов не менее 12 правильных ответов
- из 30 тестов не менее 18 правильных ответов
- из 35 тестов не менее 21 правильных ответов
- из 50 тестов не менее 30 правильных ответов
- из 100 тестов не менее 60 правильных ответов

Оценка «2» (неудовлетворительно) – менее 60% правильных ответов

- из 10 тестов 5 и менее правильных ответов
- из 15 тестов 10 и менее правильных ответов
- из 20 тестов 11 и менее правильных ответов
- из 30 тестов 17 и менее правильных ответов
- из 35 тестов 20 и менее правильных ответов
- из 50 тестов 29 и менее правильных ответов
- из 100 тестов 59 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ КРОССВОРДОВ

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 вопросов не менее 9 правильных ответов
- из 15 вопросов не менее 14 правильных ответов
- из 20 вопросов не менее 18 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 вопросов не менее 8 правильных ответов
- из 15 вопросов не менее 12 правильных ответов
- из 20 вопросов не менее 16 ответов правильных

Оценка «З» (удовлетворительно) – 79-70% правильных ответов

- из 10 вопросов не менее 7 правильных ответов
- из 15 вопросов не менее 11 правильных ответов
- из 20 вопросов не менее 14 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ ТЕРМИНОЛОГИЧЕСКОГО ДИКТАНТА

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 вопросов не менее 9 правильных ответов
- из 15 вопросов не менее 14 правильных ответов
- из 20 вопросов не менее 18 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 вопросов не менее 8 правильных ответов
- из 15 вопросов не менее 12 правильных ответов
- из 20 вопросов не менее 16 ответов правильных

Оценка «З» (удовлетворительно) – 79-70% правильных ответов

- из 10 вопросов не менее 7 правильных ответов
- из 15 вопросов не менее 11 правильных ответов
- из 20 вопросов не менее 14 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов

КРИТЕРИИ ОЦЕНИВАНИЯ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Оценка «5» (отлично) – 100-90% правильных ответов

- из 10 тестов не менее 9 правильных ответов
- из 15 тестов не менее 14 правильных ответов
- из 20 тестов не менее 18 правильных ответов
- из 30 тестов не менее 27 правильных ответов
- из 35 тестов не менее 31 правильных ответов
- из 50 тестов не менее 45 правильных ответов
- из 100 тестов не менее 90 правильных ответов

Оценка «4» (хорошо) – 89-80% правильных ответов

- из 10 тестов не менее 8 правильных ответов
- из 15 тестов не менее 12 правильных ответов
- из 20 тестов не менее 16 ответов правильных
- из 30 тестов не менее 24 правильных ответов
- из 35 тестов не менее 28 правильных ответов
- из 50 тестов не менее 40 правильных ответов
- из 100 тестов не менее 80 правильных ответов

Оценка «3» (удовлетворительно) – 79-70% правильных ответов

- из 10 тестов не менее 7 правильных ответов
- из 15 тестов не менее 11 правильных ответов
- из 20 тестов не менее 14 правильных ответов
- из 30 тестов не менее 21 правильных ответов
- из 35 тестов не менее 24 правильных ответов
- из 50 тестов не менее 35 правильных ответов
- из 100 тестов не менее 70 правильных ответов

Оценка «2» (неудовлетворительно) – менее 70% правильных ответов

- из 10 вопросов 6 и менее правильных ответов
- из 15 вопросов 10 и менее правильных ответов
- из 20 вопросов 13 и менее правильных ответов
- из 30 тестов 20 и менее правильных ответов
- из 35 тестов 23 и менее правильных ответов
- из 50 тестов 34 и менее правильных ответов
- из 100 тестов 69 и менее правильных ответов

КРИТЕРИИ ОЦЕНКИ ТЕОРЕТИЧЕСКОГО КОМПОНЕНТА

- 5 (отлично) обучающийся демонстрирует знания в полном объеме программы основной учебной дисциплины, свободно владеет материалом смежных дисциплин, дает полные ответы на вопросы, выделяя при этом основные и самые существенные положения, приводит точные и полные формулировки, свободно владеет понятийным аппаратом учебной дисциплины, отвечает без наводящих вопросов, мыслит последовательно и логично, способен вести полемику, развивать положения предлагаемые преподавателем.
- **4 (хорошо)** обучающийся демонстрирует знания в полном объеме программы основной учебной дисциплины, в основном владеет материалом смежных учебных дисциплин, понимает предмет разбора, однако дает не вполне исчерпывающие ответы, отвечая на дополнительные наводящие вопросы, владеет понятийным аппаратом учебной дисциплины, мыслит последовательно и логично.
- 3 (удовлетворительно) обучающийся демонстрирует знания основ изучаемой учебной дисциплины, владеет основами смежных учебных дисциплин, понимает предмет разбора, однако дает не вполне исчерпывающие ответы, на наводящие дополнительные вопросы отвечает в целом правильно, но не полно, испытывает затруднения при использовании понятийного аппарата учебной дисциплины.
- **2** (неудовлетворительно) обучающийся не знает значительной части вопросов по основной и смежным учебным дисциплинам, затрудняется систематизировать материал и мыслить логично.

КРИТЕРИИ ОЦЕНКИ РЕШЕНИЯ ПРОБЛЕМНО-СИТУАЦИОННОЙ ЗАДАЧИ

- **5 «отлично»** комплексная оценка предложенной ситуации; знание теоретического материала с учетом междисциплинарных связей, правильный выбор тактики действий; последовательное, уверенное выполнение практических умений в соответствии с алгоритмами действий;
- 4 «хорошо» комплексная оценка предложенной ситуации, незначительные затруднения при ответе на теоретические вопросы, неполное раскрытие междисциплинарных связей; правильный выбор тактики действий; логическое обоснование теоретических вопросов с дополнительными комментариями педагога; последовательное, уверенное выполнение практических умений в соответствии с алгоритмом действий;
- 3 «удовлетворительно» затруднения с комплексной оценкой предложенной ситуации; неполный ответ, требующий наводящих вопросов педагога; выбор тактики действий, в соответствии с ситуацией, возможен при наводящих вопросах педагога, правильное последовательное, но неуверенное выполнение практических умений в соответствии с алгоритмом действий;
- **2 «неудовлетворительно»** неверная оценка ситуации; неправильно выбранная тактика действий, приводящая к ухудшению ситуации, нарушению правил безопасности пациента (клиента аптеки) и медицинского персонала; неправильное выполнение практических умений.

КРИТЕРИИ ОЦЕНКИ РЕФЕРАТА

Критерии	0 баллов	2 балла	3 балла	4 балла	5 баллов
качества					
Соответствие	Реферат не	Содержание	Содержание	Содержание	Содержание
содержания	соответству	реферата не	реферата в	реферата	реферата
реферата теме	ет теме	полностью	основном	полностью	полностью
И		соответствуе	соответствует	соответствует	соответствует
поставленным		т теме	теме и	теме и	теме и
задачам			задачам	поставленным	поставленным
				задачам	задачам
Полнота	Тема не	Тема раскрыта	Тема	Тема	Тема
раскрытия	раскрыта	недостаточно,	раскрыта	раскрыта,	полностью
темы и		использовано	недостаточно	однако	раскрыта,
использования		мало	использованы	некоторые	использованы
источников		источников	не все	положения	современные
			основные	реферата	источники
			источники	изложены не	литературы в
			литературы	слишком	достаточном
				подробно,	количестве
				требуют	
				уточнения,	
				использованы	
				все основные	
				источники	
				литературы	
Умение	Выводы не	Материал не	Материал	Материал	Материал
обобщить	сделаны	обобщен,	обобщен, но	обобщен,	обобщен,
материал и		выводов нет	выводы	сделаны	сделаны
сделать краткие			громоздкие,	четкие	четкие и
выводы			не четкие	выводы	ясные
					выводы
Иллюстрации,	Иллюстраций	Иллюстрации	Иллюстрации	Иллюстрации	Иллюстрации
ИХ	нет	не	недостаточно	информативны	информативн
информативнос		информативн	информативн	е, хорошего	ые высокого
ТЬ		ые	ые	качества	качества
Соответствие	Не	Не	Основные	Оформление	Оформление
оформления	соответствует	соблюдены	требования к	реферата	реферата
реферата		основные	оформлению	полностью	полностью
предъявляемым		требования к	реферата	соответствует	соответствует
требованиям		оформлению	соблюдены	предъявляемы	предъявляемы
		реферата		м требованиям	M
					требованиям

Максимальный балл, который может получить обучающийся за реферат, – **25 баллов**.

Шкала перевода рейтинга в четырёхбалльную шкалу оценок

Оценка	«2»	«3»	«4»	«5»
Оцепка	неудовлетворительно	удовлетворительно	хорошо	отлично
Первичный балл	0-12	13-16	17-20	21-25

критерии оценки презентаций

Оценка	5	4	3	2
Содержание	Работа полностью завершена	Почти полностью сделаны наиболее важные компоненты работы	Не все важнейшие компоненты работы выполнены	Работа сделана фрагментарно и с помощью педагога
	Работа демонстрирует глубокое понимание описываемых процессов	Работа демонстрирует понимание основных моментов, хотя некоторые детали не уточняются	Работа демонстрирует понимание, но неполное	Работа демонстрирует минимальное понимание
	Даны интересные дискуссионные материалы. Грамотно используется научная лексика	Имеются некоторые материалы дискуссионного характера. Научная лексика используется, но иногда не корректно.	Дискуссионные материалы есть в наличии, но не способствуют пониманию проблемы. Научная терминология или используется мало или используется некорректно.	Минимум дискуссионных материалов. Минимум научных терминов
	Обучающийся предлагает собственную интерпретацию или развитие темы (обобщения, приложения, аналогии)	Обучающийся большинстве случаев предлагает собственную интерпретацию или развитие темы	Обучающийся иногда предлагает свою интерпретацию	Интерпретация ограничена или беспочвенна
	Везде, где возможно выбирается более эффективный и/или сложный процесс	Почти везде выбирается более эффективный процесс	Обучающемуся нужна помощь в выборе эффективного процесса	Обучающийся может работать только под руководством педагога
Дизайн	Дизайн логичен и очевиден	Дизайн есть	Дизайн случайный	Дизайн не ясен
	Имеются постоянные элементы дизайна. Дизайн подчеркивает содержание.	Имеются постоянные элементы дизайна. Дизайн соответствует содержанию.	Нет постоянных элементов дизайна. Дизайн может и не соответствовать содержанию.	Элементы дизайна мешают содержанию, накладываясь на него.

	Все параметры шрифта хорошо подобраны (текст хорошо читается)	Параметры шрифта подобраны. Шрифт читаем.	Параметры шрифта недостаточно хорошо подобраны, могут мешать восприятию	Параметры не подобраны. Делают текст трудночитаемым
Графика	Хорошо подобрана, соответствует содержанию, обогащает содержание	Графика соответствует содержанию	Графика мало соответствует содержанию	Графика не соответствует содержанию
Грамотность	Нет ошибок: ни грамматических, ни синтаксических	Минимальное количество ошибок	Есть ошибки, мешающие восприятию	Много ошибок, делающих материал трудным для восприятия

Максимальный балл, который может получить обучающийся за презентацию, – **50 баллов**.

Шкала перевода рейтинга в четырёхбалльную шкалу оценок

Оценка	«2»	«3»	«4»	«5»
Оценка	неудовлетворительно	удовлетворительно	хорошо	отлично
Первичный балл	0-32	33-37	38-42	43-50

ЭТАЛОНЫ ОТВЕТОВ

1. К тестовым заданиям для входного контроля

Вариант 1	Вариант 2
1. 2	1.1
2. 2	2. 3
3. 1	3. 2
4. 1	4. 4
5. 1	5. 1
6. 3	6. 3
7. 2	7.3
8. 3	8. 2
9. 3	9.3
10.1	10.1
11.3	11.1
12.3	12. 2

2. К тестовым заданиям на тему: «Химическая связь»

I	II	III		
1. Б	1.в	1.55%		
2. B	2.б	2.0,75Γ		
3. 1в, 2б, 3г, 4а, 5б,	3.г	3.65л		
6в	4.в	4.14,3г		
4. Б		5.22%		
5. B				
6. B				

3. К комплекту упражнений

1.1,3; 0,1M	б.титан, серебро, ксенон
2.2,8; 0,15M	7.скандий
3.4моль; 8х10^23	8.3,0; 3,1; 3,2
4.0,1M; 2	9.азот, ванадий, хром
5.1,5M	10.свинец

4. К комплекту заданий для контрольных работ

II II II III III JURIUI JURIU JURIU JURIU JURIU JURIU JURIU JURIU JURIURI JURIU JURIURI JURIU	7
Вариант 1	Часть А
	1.4
	2.3
	3.2
	4.3
	5.3
	6.4
	7.1
	8.3
	9.3

	10.2
	10.3
	Часть В
	1. 4,2
	2. 1,5
	3. 2,5
	Часть С
	1. 12л
	2. 71%
D 2	
Вариант 2	Часть А
	1.3
	2.2
	3.4
	4.2
	5.1
	6.2
	7.3
	7.3
	9.4
	10.3
	Часть В
	1. 1,4
	2. 2,3
	3. 1,5
	Часть С
	1. 9л
	2. 49%
	∠. ≒ ೨/0

5. К комплекту задач

1.53%	7. 400 г
2.7,7%	8. 23 кДж
3.2:1	9. 10,8 г
4.8,68 мл	10. ув в 6 раз
5.3 г	11. 0,051 моль/л*мин
6. 228 г	